Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 24 trang 160 Sách bài tập (SBT) Toán 9 Tập 1:...

Câu 24 trang 160 Sách bài tập (SBT) Toán 9 Tập 1: Cho hình 74, trong đó MN = PQ. Chứng minh rằng:...

Cho hình 74, trong đó MN = PQ. Chứng minh rằng. Câu 24 trang 160 Sách bài tập (SBT) Toán 9 Tập 1 - Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây

Cho hình 74, trong đó MN = PQ. Chứng minh rằng:

a)      AE = AF;                                b) AN = AQ.

a) Nối OA

Ta có: MN = PQ (gt)

Suy ra: OE = OF (hai dây bằng nhau cách đều tâm)

Xét hai tam giác OAE và OAF, ta có:

\(\widehat {OEA} = \widehat {{\rm{OF}}A} = 90^\circ \)

      OA chung

      OE = OF ( chứng minh trên)

Advertisements (Quảng cáo)

Suy ra: ∆OAE = ∆OAF (cạnh huyền, cạnh góc vuông)

Suy ra: AE = AF

b) Ta có: OE ⊥ MN (gt)

Suy ra: \(EN = {1 \over 2}MN\) (đường kính vuông góc với dây cung)  (1)

            OF ⊥PQ (gt)

Suy ra: \(FQ = {1 \over 2}PQ\) (đường kính vuông góc với dây cung)    (2)

Mặt khác: MN = PQ (gt)                                          (3)

Từ (1), (2) và (3) suy ra: EN = FQ                           (4)

Mà AE = QF ( chứng minh trên)                              (5)

Từ (4) và (5) suy ra:  AN + NE = AQ + QF              (6)

Từ (5) và (6) suy ra: AN = AQ.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)