Tam giác ABC vuông tại A có AB = 21cm, \(\widehat C = 40^\circ \). Hãy tính các độ dài:
a) AC ; b) BC ; c) Phân giác BD.
a) Ta có: \(AC = AB.\cot g\widehat C = 21.\cot g40^\circ \approx 25,0268\left( {cm} \right)\)
b) Ta có: \(BC = {{AC} \over {\sin \widehat C}} = {{21} \over {\sin 40^\circ }} \approx 32,6702\left( {cm} \right)\)
Advertisements (Quảng cáo)
c) Vì \(\Delta ABC\) vuông tại A nên \(\widehat B + \widehat C = 90^\circ \)
Suy ra: \(\widehat B = 90^\circ - \widehat C = 90^\circ - 40^\circ = 50^\circ \)
Vì BD là phân giác của B nên:
\(\widehat {ABD} = {1 \over 2}\widehat B = {1 \over 2}.50^\circ = 25^\circ \)
Trong tam giác vuông ABD, ta có:
\(BD = {{AB} \over {{\rm{cos}}\widehat {ABD}}} = {{21} \over {\cos 25^\circ }} \approx 23,1709\left( {cm} \right)\)