a) PT;
b) Diện tích tam giác PQR.. Câu 60. Trang 115 Sách Bài Tập (SBT) Toán 9 Tập 1 - Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Cho hình:
Biết:
\(\widehat {QPT} = 18^\circ \),
\(\widehat {PTQ} = 150^\circ \),
QT = 8cm,
TR = 5cm.
Hãy tính:
a) PT;
b) Diện tích tam giác PQR.
Advertisements (Quảng cáo)
a) Kẻ \(QS \bot PR\)
Ta có: \(\widehat {QTS} = 180^\circ - \widehat {QTP} = 180^\circ - 150^\circ = 30^\circ \)
Trong tam giác vuông QST, ta có:
\(QS = QT.\sin \widehat {QTS} = 8.\sin 30^\circ = 4\left( {cm} \right)\)
\(TS = QT.c{\rm{os}}\widehat {QTS} = 8.c{\rm{os30}}^\circ \approx 6,928\left( {cm} \right)\)
Trong tam giác vuông QSP, ta có:
\(SP = QS.\cot g\widehat {QPS} = 4.\cot g18^\circ = 12,311\left( {cm} \right)\)
\(PT = SP - TS \approx 12,311 - 6,928 = 5,383\left( {cm} \right)\)
b) Ta có:
\({S_{\Delta QPR}} = {1 \over 2}.QS.PR = {1 \over 2}.QS.(PT + TR)\)
\( \approx {1 \over 2}.4.(5,383 + 5) = {1 \over 2}.10,383 = 20,766\left( {c{m^2}} \right)\)