Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 67 trang 15 SBT Toán 9 Tập 1: Áp dụng bất...

Câu 67 trang 15 SBT Toán 9 Tập 1: Áp dụng bất đẳng thức Cô-si cho hai số không âm, chứng...

Áp dụng bất đẳng thức Cô-si cho hai số không âm, chứng minh. Câu 67 trang 15 Sách Bài Tập (SBT) Toán 9 Tập 1 - Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai

Áp dụng bất đẳng thức Cô-si cho hai số không âm, chứng minh:

a) Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.

b) Trong các hinh chữ  nhật có cùng diện tích thì hình vuông có chu vi bé nhất.

Gợi ý làm bài

Với hai số không âm a và b, bất đẳng thức Cô-si cho hai số đó là:

\({{a + b} \over 2} \ge \sqrt {ab} \)

Advertisements (Quảng cáo)

a) Các hình chữ nhật có cùng chu vi thì \({{a + b} \over 2}\) không đổi. Từ bất đẳng thức:

\({{a + b} \over 2} \ge \sqrt {ab} \) và \({{a + b} \over 2}\) không đổi suy ra  \({{a + b} \over 2}\) \(\sqrt {ab} \) đạt giá trị lớn nhất bằng \({{a + b} \over 2}\) khi a = b.

Điều này cho thấy trong các hình chữ nhật có cùng chu vi thì hình vuông có diện thì hình vuông có diện tích lớn nhất.

b) Các hình chữ nhật có cùng diện tích thì ab không đổi. Từ bất đẳng thức:

\({{a + b} \over 2} \ge \sqrt {ab} \) và ab không đổi suy ra \({{a + b} \over 2}\) đạt giá trị nhỏ nhất bằng \(\sqrt {ab} \) khi a = b.

Điều này cho thấy trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi bé nhất.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)