Rút gọn biểu thức
a) \(\sqrt 2 + \sqrt 8 + \sqrt {50} \)
b) \(4\sqrt 3 + \sqrt {27} - \sqrt {45} + \sqrt 5 \)
Sử dụng công thức khai phương một tích: \(\sqrt {A.B}=\sqrt {A}.\sqrt {B}\) với \(A,B \ge 0\)
Sử dụng hằng đẳng thức \( \sqrt {A^2}=A\) với \(A\ge 0 .\)
Advertisements (Quảng cáo)
a)
\(\eqalign{& \sqrt 2 + \sqrt 8 + \sqrt {50} = \sqrt 2 + \sqrt {\left( {{2^2} \times 2} \right)} + \sqrt {\left( {{5^2} \times 2} \right)} \cr & = \sqrt 2 + 2\sqrt 2 + 5\sqrt 2 = 8\sqrt 2 \cr} \)
b)
\(\eqalign{& 4\sqrt 3 + \sqrt {27} - \sqrt {45} + \sqrt 5 = 4\sqrt 3 + \sqrt {\left( {{3^2} \times 3} \right)} - \sqrt {\left( {{3^2} \times 5} \right)} + \sqrt 5 \cr & = 4\sqrt 3 + 3\sqrt 3 - 3\sqrt 5 + \sqrt 5 = 7\sqrt 3 - 2\sqrt 5 \cr} \)