Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 78 trang 114 SBT Toán 9 Tập 2:Chứng minh đường tròn...

Câu 78 trang 114 SBT Toán 9 Tập 2:Chứng minh đường tròn (O; OH) tiếp xúc với cạnh...

a) Chứng minh đường tròn (O; OH) tiếp xúc với cạnh AB.. Câu 78 trang 114 Sách Bài Tập (SBT) Toán 9 Tập 2 - Bài tập ôn chương III - Góc với đường tròn

Cho tam giác AHB có \(\widehat H = 90^\circ ,\widehat A = 30^\circ \) và BH = 4cm. Tia phân giác của góc B cắt AH tại O. Vẽ đường tròn (O; OH) và đường tròn (O; OA).

a) Chứng minh đường tròn (O; OH) tiếp xúc với cạnh AB.

b) Tính diện tích hình vành khăn nằm giữa hai đường tròn trên.

Giải

a) Kẻ \(OK \bot AB\)

BO là đường phân giác của \(\widehat B\)

\( \Rightarrow OK = OH\) (tính chất đường phân giác)

Vậy đường tròn (O; OH) tiếp xúc với AB tại K.

b) ∆AHB có \(\widehat H = {90^0}\); \(\widehat A = {30^0}\)

Advertisements (Quảng cáo)

Suy ra: \(\widehat B = {60^0} \Rightarrow \widehat {ABO} = {1 \over 2}\widehat B = {30^0}\)

Suy ra: ∆OAB cân tại O nên OB = OA

Vậy B  (O; OA)

∆BHO có \(\widehat H = {90^0}\); \(\widehat {OBH} = {30^0}\)

\(OH = BH.\tan {30^0} = 4.{{\sqrt 3 } \over 3} = {{4\sqrt 3 } \over 3}\) (cm)

\(OB = {{BH} \over {\cos \widehat {OBH}}} = {4 \over {\cos {{30}^0}}} = {4 \over {{{\sqrt 3 } \over 2}}} = {{8\sqrt 3 } \over 3}\) (cm)

Diện tích đường tròn nhỏ: S1 = \(\pi {\left( {{{4\sqrt 3 } \over 3}} \right)^2} = {{16\pi } \over 3}\)  (cm2)

Diện tích đường tròn lớn: \({S_2} = \pi {\left( {{{8\sqrt 3 } \over 3}} \right)^2} = {{64\pi } \over 3}\)  (cm2)

Diện tích hình vành khăn:

S = \({S_2} - {S_1} = {{64\pi } \over 3} - {{16\pi } \over 3} = {{48\pi } \over 3} = 16\pi \) (cm2)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)