Trang chủ Lớp 9 SGK Toán 9 - Chân trời sáng tạo Bài 1 trang 21 (BTCC) Toán 9 tập 2 – Chân trời...

Bài 1 trang 21 (BTCC) Toán 9 tập 2 - Chân trời sáng tạo: Kết luận nào sau đây đúng khi nói về đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0}...

Dựa vào: Đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) là một đường cong đi qua gốc tọa độ, nhận trục tung làm trục đối xứng. Phân tích và lời giải bài tập 1 trang 21 (BTCC) SGK Toán 9 tập 2 - Chân trời sáng tạo - Bài tập cuối chương 6. Kết luận nào sau đây đúng khi nói về đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)? A. Với a > 0...

Question - Câu hỏi/Đề bài

Kết luận nào sau đây đúng khi nói về đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)?

A. Với a > 0, đồ thị nằm phía trên trục hoành và O là điểm cao nhất của đồ thị.

B. Với a < 0, đồ thị nằm phía dưới trục hoành và O là điểm thấp nhất của đồ thị.

C. Với a > 0, đồ thị nằm phía dưới trục hoành và O là điểm thấp nhất của đồ thị.

D. Với a < 0, đồ thị nằm phía dưới trục hoành và O là điểm cao nhất của đồ thị.

Advertisements (Quảng cáo)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào: Đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) là một đường cong đi qua gốc tọa độ, nhận trục tung làm trục đối xứng. Đường cong đó được gọi là một parabol đỉnh O.

+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.

+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành, O là điểm cao nhất của đồ thị.

Answer - Lời giải/Đáp án

Chọn đáp án D.

Advertisements (Quảng cáo)