Cho hàm số \(y = a{x^2}\left( {a \ne 0} \right)\).
a) Tìm a, biết đồ thị của hàm số đi qua điểm M(2;6).
b) Vẽ đồ thị của hàm số với a vừa tìm được.
c) Tìm các điểm thuộc đồ thị trên có tung độ y = 9.
a) Thay x = 2; y = 6 vào hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) để tìm a.
b) Để vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\), ta thực hiện các bước sau:
+ Lập bảng giá trị của hàm số với một số giá trị của x (thường lấy 5 giá trị gồm số 0 và hai cặp giá trị đối nhau).
+ Trên mặt phẳng tọa độ Oxy, đánh dấu các điểm (x;y) trong bảng giá trị (gồm điểm (0;0) và hai cặp điểm đối xứng nhau qua trục Oy).
+ Vẽ đường parabol đi qua các điểm vừa được đánh dấu.
c) Thay y = 9 để tìm x và kết luận các điểm thuộc đồ thị.
Advertisements (Quảng cáo)
a) Thay x = 2; y = 6 vào hàm số \(y = a{x^2}\left( {a \ne 0} \right)\), ta được:
6 = a.22 suy ra a = \(\frac{3}{2}\).
b) Theo phần a ta vẽ đồ thị hàm số \(y = \frac{3}{2}{x^2}\).
Bảng giá trị:
Trên mặt phẳng tọa độ, lấy các điểm A(-2;6), B(-1; \(\frac{3}{2}\)), O(0;0), B’(1; \(\frac{3}{2}\)), A’(2;6)
Đồ thị hàm số \(y = \frac{3}{2}{x^2}\)là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như dưới đây.
c) Thay y = 9 vào \(y = \frac{3}{2}{x^2}\), ta được:
\(\begin{array}{l}9 = \frac{3}{2}{x^2}\\{x^2} = 6\\x = \pm \sqrt 6 \end{array}\)
Vậy có 2 điểm thuộc đồ thị là: \(\left( {\sqrt 6 ;9} \right)\) và \(\left( { - \sqrt 6 ;9} \right)\).