Trang chủ Lớp 9 SGK Toán 9 - Kết nối tri thức Bài tập 9.9 trang 76 Toán 9 tập 2 – Kết nối...

Bài tập 9.9 trang 76 Toán 9 tập 2 - Kết nối tri thức: Cho tam giác ABC nội tiếp đường tròn (O)...

Gọi E là giao điểm của AH và BC. Chứng minh tam giác AEB vuông tại E nên \(\widehat {BAH} + \widehat B =. Phân tích, đưa ra lời giải Giải bài tập 9.9 trang 76 SGK Toán 9 tập 2 - Kết nối tri thức - Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác . Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC.

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng \(\widehat {BAH} = \widehat {OAC}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Gọi E là giao điểm của AH và BC. Chứng minh tam giác AEB vuông tại E nên \(\widehat {BAH} + \widehat B = {90^o}\left( 1 \right)\)

+ Gọi AD là đường kính đường tròn (O). Chứng minh tam giác ADC vuông tại C nên \(\widehat {OAC} + \widehat D = {90^o}\left( 2 \right)\)

+ Chứng minh được \(\widehat B = \widehat D\left( 3 \right)\)

+ Từ (1), (2), (3) ta có: \(\widehat {BAH} = \widehat {OAC}\)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Gọi E là giao điểm của AH và BC nên AE là đường cao của tam giác ABC. Do đó, \(AE \bot BC\)

Suy ra, tam giác BAE vuông tại E nên \(\widehat {EAB} + \widehat B = {90^o}\) hay \(\widehat {BAH} + \widehat B = {90^o}\left( 1 \right)\)

Gọi AD là đường kính của (O). Khi đó, tam giác CAD vuông tại C. Suy ra: \(\widehat {OAC} + \widehat D = {90^o}\left( 2 \right)\)

Vì hai góc B và D là góc nội tiếp cùng chắn cung AC của đường tròn (O; OA) nên \(\widehat B = \widehat D\left( 3 \right)\)

Từ (1), (2) và (3) ta có: \(\widehat {BAH} = \widehat {OAC}\)