Rút gọn :
a) (y√y−√y√y+1):√yy+√y với y>0;
b) (√a√a−1−1a−√a):(1√a+1+2a−1) với a>0,a≠1;
c) (x√x+1x√x+x+√x+1−√xx+1):√x−1x+1 với x≥0,x≠1;
d) (√x−√y1+√xy+√x+√y1−√xy):(x+y+2xy1−xy+1)với x≥0,y≥0,xy≠1.
+) Quy đồng mẫu các phân thức.
Advertisements (Quảng cáo)
+) Biến đổi và rút gọn biểu thức.
a)(y√y−√y√y+1):√yy+√y(y>0)=(√y−√y√y+1):√y√y(√y+1)=√y(√y+1)−√y√y+1:1√y+1=y+√y−√y√y+1.(√y+1)=y.
b)(√a√a−1−1a−√a):(1√a+1+2a−1)(a>0,a≠1)=(√a√a−1−1√a(√a−1)):(1√a+1+2(√a−1)(√a+1))=a−1√a(√a−1):√a−1+2(√a−1)(√a+1)=(√a−1)(√a+1)√a(√a−1).(√a−1)(√a+1)√a+1=√a+1√a.√a−11=a−1√a.
c)(x√x+1x√x+x+√x+1−√xx+1):√x−1x+1(x≥0;x≠1)=[(√x+1)(x−√x+1)x(√x+1)+(√x+1)−√xx+1].x+1√x−1=[(√x+1)(x−√x+1)(√x+1)(x+1)−√xx+1].x+1√x−1=(x−√x+1x+1−√xx+1).x+1√x−1=x−√x+1−√xx+1.x+1√x−1=(√x−1)2√x−1=√x−1.
d)(√x−√y1+√xy+√x+√y1−√xy):(x+y+2xy1−xy+1)(x≥0,y≥0,xy≠1)=(√x+√y)(1−√xy)+(√x+√y)(1+√xy)(1−√xy)(1+√xy):x+y+2xy+1−xy1−xy=√x−x√y+√y−y√x+√x+x√y+√y+y√x1−xy.1−xyx+y+xy+1=2√x+2√yx+y+xy+1=2(√x+√y)x+1+y(x+1)=2(√x+√y)(x+1)(y+1).