Tính :
a) √2(√4−√7−√4+√7+√2);
b) (4−√7)(√2+√14)√4+√7;
c) √4+√15−√4−√15−√2−√3;
d) √13+30√2+√9+4√2.
Advertisements (Quảng cáo)
+) Sử dụng công thức: √A2B=|A|√B={AkhiA≥0−AkhiA<0.
a)√2(√4−√7−√4+√7+√2)=√8−2√7−√8+2√7+2=√(√7)2−2√7+1−√(√7)2+2√7+1+2=√(√7−1)2−√(√7+1)2+2=|√7−1|−|√7+1|+2=√7−1−√7−1+2=0
b)(4−√7)(√2+√14)√4+√7=12.2(4−√7).√2(1+√7)√4+√7=12(8−2√7)(1+√7)√8+2√7=12((√7)2−2√7+1)(1+√7)√(√7)2+2√7+1=12(√7−1)2(1+√7)|√7+1|=12(√7−1)2(1+√7)(√7+1)=12(√7−1)2(√7+1)2=12[(√7−1)(√7+1)]2=12(7−1)2=12.36=18.
c)√4+√15−√4−√15−√2−√3=12.2(√4+√15−√4−√15−√2−√3)=12(√8+2√15−√8−2√15−√4−2√3)=12(√(√5)2+2.√5.√3+(√3)2−√(√5)2−2.√5.√3+(√3)2−√(√3)2+2.√3+1)=12(√(√5+√3)2−√(√5−√3)2−√(√3−1)2)=12(|√5+√3|−|√5−√3|−|√3−1|)=12(√5+√3−√5+√3−√3−1)=12.(√3−1)=√3−12.
d)√13+30√2+√9+4√2=√13+30√2+√(2√2)2+2.2√2+1=√13+30√2+√(2√2+1)2=√13+30√2+|2√2+1|=√13+30√2+2√2+1=√13+30√(√2+1)2=√13+30|√2+1|=√13+30(√2+1)=√13+30√2+30=√(3√2)2+2.3√2.5+52=√(3√2+5)2=|3√2+5|=3√2+5.