Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 40 trang 57 sgk Toán 9 tập 2, Giải phương trình...

Bài 40 trang 57 sgk Toán 9 tập 2, Giải phương trình bằng cách đặt ẩn phụ...

Giải phương trình bằng cách đặt ẩn phụ. Bài 40 trang 57 sgk Toán 9 tập 2 - Bài 7. Phương trình quy về phương trình bậc hai

Bài 40. Giải phương trình bằng cách đặt ẩn phụ:

a) \(3{({x^2} + {\rm{ }}x)^2}-{\rm{ }}2({x^2} + {\rm{ }}x){\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\);            

b) \({({x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}2)^2} + {\rm{ }}{x^2}-{\rm{ }}4x{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\);

c) \(x - \sqrt{x} = 5\sqrt{x} + 7\);                             

d) \(\frac{x}{x+ 1} – 10 . \frac{x+1}{x}= 3\)

Hướng dẫn: a) Đặt \(t{\rm{ }} = {\rm{ }}{x^2} + {\rm{ }}x\), ta có phương trình \(3{t^2}-{\rm{ }}2t{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0\). Giải phương trình này, ta tìm được hai giá trị của \(t\). Thay mỗi giá trị của \(t\) vừa tìm được vào đằng thức \(t{\rm{ }} = {\rm{ }}{x^2} + {\rm{ }}x\) , ta được một phương trình của ẩn \(x\). Giải mỗi phương trình này sẽ tìm được giá trị của \(x\).

d) Đặt \(\frac{x+1}{x} = t\) hoặc \(\frac{x}{x+ 1} = t\)

:

a) \(3{({x^2} + {\rm{ }}x)^2}-{\rm{ }}2({x^2} + {\rm{ }}x){\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\). Đặt \(t{\rm{ }} = {\rm{ }}{x^2} + {\rm{ }}x\), ta có:

\(3{t^2}{\rm{  - }}2t{\rm{  - }}1 = 0;{t_1} = 1,{t_2} =  - {1 \over 3}\)

Với \({t_1} = 1\), ta có: \({x^2} + {\rm{ }}x{\rm{ }} = {\rm{ }}1{\rm{ }}\) hay \({\rm{ }}{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0,\Delta {\rm{  = }}4{\rm{ }} + {\rm{ }}1{\rm{  = }}5,{\rm{ }}\sqrt \Delta   = \sqrt 5 \)

\({x_1} = {{ - 1 + \sqrt 5 } \over 2},{x_2} = {{ - 1 - \sqrt 5 } \over 2}\)

Với \({t_2}= -\frac{1}{3}\), ta có: \({x^2} + x =  - {1 \over 3}\)hay \(3{x^2} + 3x{\rm{  + }}1{\rm{  = }}0\):

Phương trình vô nghiệm, vì \(\Delta = 9 – 4 . 3 . 1 = -3 < 0\)

Vậy phương trình đã cho có hai nghiệm: \({x_1} = {{ - 1 + \sqrt 5 } \over 2},{x_2} = {{ - 1 - \sqrt 5 } \over 2}\)

b) \({({x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}2)^2} + {\rm{ }}{x^2}-{\rm{ }}4x{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\)

Advertisements (Quảng cáo)

Đặt \(t{\rm{ }} = {\rm{ }}{x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}2\), ta có phương trình \({t^2} + {\rm{ }}t{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}0\)

Giải ra ta được \({t_1} = {\rm{ }}2,{\rm{ }}{t_2} = {\rm{ }} - 3\).

- Với \({t_1}= 2\) ta có: \({x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}2\) hay \({x^2}-{\rm{ }}4x{\rm{ }} = {\rm{ }}0\). Suy ra \({x_1} = {\rm{ }}0,{\rm{ }}{x_2} = {\rm{ }}4\).

- Với \({t_2}= -3\), ta có: \({x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }} - 3\) hay \({x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\).

Phương trình này vô nghiệm vì \(\Delta= {(-4)}^2 – 4 . 1 . 5 = 16 – 20 = -4 < 0\)

Vậy phương trình đã cho có hai nghiệm: \({x_1} = 0, {x_2}= 4\).

c) \(x - \sqrt{x} = 5\sqrt{x} + 7\). Điều kiện: \(x ≥ 0\). Đặt \(t = \sqrt{x}, t ≥ 0\)

Ta có:\({t^2}-{\rm{ }}6t{\rm{ }}-{\rm{ }}7{\rm{ }} = {\rm{ }}0\). Suy ra: \({t_1}= -1\) (loại), \({t_2}= 7\)

Với \(t = 7\), ta có: \(\sqrt{x} = 7\). Suy ra \(x = 49\).

Vậy phương trình đã cho có một nghiệm: \(x = 49\)

d) \(\frac{x}{x+ 1}– 10 . \frac{x+1}{x} = 3\). Điều kiện: \(x ≠ -1, x ≠ 0\)

Đặt \(\frac{x}{x+ 1}\) = t, ta có: \(\frac{x+1}{x}\) = \(\frac{1}{t}\). Vậy ta có phương trình: \(t - \frac{10}{t} – 3 = 0\)

hay: \({t^2}-{\rm{ }}3t{\rm{ }}-{\rm{ }}10{\rm{ }} = {\rm{ }}0\). Suy ra \({t_1} = 5, {t_2} = -2\).

- Với \({t_1}= 5\), ta có \(\frac{x}{x+ 1} = 5\) hay \(x = 5x + 5\). Suy ra \(x = -\frac{5}{4}\)

-  Với \({t_2} = -2\), ta có \(\frac{x}{x+ 1}= -2\) hay \(x = -2x – 2\). Suy ra \(x = -\frac{2}{3}\).

Vậy phương trình đã cho có hai nghiệm: \({x_1}= -\frac{5}{4}\), \({x_2} =-\frac{2}{3}\)  

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)