9. Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:
a) \(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\);
b) \(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right.\)
a) \(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = -x + 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = -x + 2 & & \\ y = -x + \frac{2}{3} & & \end{matrix}\right.\)
Ta có: \(a = -1, a’ = -1\), \(b = 2, b’ = \frac{2}{3}\) nên \(a = a’, b ≠ b’\) \(\Rightarrow\) Hai đường thẳng song song nhau.
Advertisements (Quảng cáo)
Vậy hệ phương trình vô nghiệm vì hai đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ song song với nhau.
b) \(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} 2y = 3x - 1 & & \\ 4y = 6x& & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} y = \frac{3}{2}x - \frac{1}{2} & & \\ y = \frac{3}{2}x& & \end{matrix}\right.\)
Ta có: \(a = \frac{3}{2}, a’ = \frac{3}{2}\), \(b = -\frac{1}{2}, b’ = 0\) nên \(a = a’, b ≠b’\).
\(\Rightarrow\) Hai đường thẳng song song với nhau.
Vậy hệ phương trình vô nghiệm vì hai đường thẳng biểu diễn các tập nghiệm của hai phương trình trong hệ song song với nhau.