Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc trong bao lâu?
Các bước giải một bài toán bằng cách lập hệ phương trình:
Bước 1. Lập hệ phương trình:
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
- Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2. Giải hệ phương trình.
Advertisements (Quảng cáo)
Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.
- Gọi x là số giờ để người thứ nhất hoàn thành công việc một mình, y là số giờ để người thứ hai hoàn thành công việc một mình. Điều kiện: \(x,y > 16\).
Mỗi giờ người thứ nhất làm được \(\frac{1}{x}\) (công việc) và người thứ hai làm được \(\frac{1}{y}\) (công việc).
Cả hai người cùng làm thì mỗi giờ được \(\frac{1}{x} + \frac{1}{y}\) (công việc) và hoàn thành toàn bộ công việc trong 16 giờ nên ta có phương trình \(16\left( {\frac{1}{x} + \frac{1}{y}} \right) = 1\). (1)
Người thứ nhất làm trong 3 giờ được \(\frac{3}{x}\) (công việc); người thứ hai làm trong 6 giờ được \(\frac{6}{y}\) (công việc) và khi đó cả hai chỉ hoàn thành được 25% (\( = \frac{1}{4}\) công việc) nên ta có phương trình \(\frac{3}{x} + \frac{6}{y} = \frac{1}{4}\). (2)
Từ (1) và (2), ta có hệ phương trình (I) \(\left\{ \begin{array}{l}16\left( {\frac{1}{x} + \frac{1}{y}} \right) = 1\\\frac{3}{x} + \frac{6}{y} = \frac{1}{4}\end{array} \right.\).
- Đặt \(u = \frac{1}{x}\) và \(v = \frac{1}{y}\), ta đưa hệ (I) về dạng (II) \(\left\{ \begin{array}{l}16\left( {u + v} \right) = 1\;\left( 3 \right)\\3u + 6v = \frac{1}{4}\;\left( 4 \right)\end{array} \right.\).
Giải hệ (II): Từ (3) ta có \(u + v = \frac{1}{{16}}\). Thay thế giá trị này vào (4), ta được: \(3\left( {u + v} \right) + 3v = \frac{1}{4}\) hay \(\frac{3}{{16}} + 3v = \frac{1}{4}\), suy ra \(v = \frac{1}{{48}}\). Do đó, \(u = \frac{1}{{24}}\).
Từ đó, ta có: \(u = \frac{1}{x} = \frac{1}{{24}}\) suy ra \(x = 24\); \(v = \frac{1}{y} = \frac{1}{{48}}\) suy ra \(y = 48\).
- Các giá trị tìm được của x và y thỏa mãn điều kiện của ẩn.
Vậy nếu làm riêng thì người thứ nhất hoàn thành công việc trong 24 giờ, người thứ hai hoàn thành trong 48 giờ.