Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Bài 6 trang 64 vở thực hành Toán 9: Không dùng MTCT,...

Bài 6 trang 64 vở thực hành Toán 9: Không dùng MTCT, tính √[3]5. √[3]7 ^3. Sử dụng kết quả nhận được, hãy giải thích vì sao √[3]5...

Ta có \({\left( {\sqrt[3]{A}} \right)^3} = \sqrt[3]{{{A^3}}} = A\) với A là một biểu thức đại số. + \({\left( {a. b} \right)^3} = {a^3}. Gợi ý giải - Bài 6 trang 64 vở thực hành Toán 9 - Bài 10. Căn bậc ba và căn thức bậc ba. Không dùng MTCT, tính ({left( {sqrt[3]{5}. sqrt[3]{7}} right)^3}). Sử dụng kết quả nhận được, hãy giải thích vì sao (sqrt[3]{5}. sqrt[3]{7} = sqrt[3]{{5...

Question - Câu hỏi/Đề bài

Không dùng MTCT, tính \({\left( {\sqrt[3]{5}.\sqrt[3]{7}} \right)^3}\). Sử dụng kết quả nhận được, hãy giải thích vì sao \(\sqrt[3]{5}.\sqrt[3]{7} = \sqrt[3]{{5.7}}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Ta có \({\left( {\sqrt[3]{A}} \right)^3} = \sqrt[3]{{{A^3}}} = A\) với A là một biểu thức đại số.

+ \({\left( {a.b} \right)^3} = {a^3}.{b^3}\)

+ Căn bậc ba của số thực a là số thực x thỏa mãn \({x^3} = a\) (kí hiệu là \(\sqrt[3]{a}\)).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Áp dụng quy tắc lũy thừa của một tích ta có \({\left( {a.b} \right)^3} = {a^3}.{b^3}\). Vì vậy \({\left( {\sqrt[3]{5}.\sqrt[3]{7}} \right)^3} = {\left( {\sqrt[3]{5}} \right)^3}.{\left( {\sqrt[3]{7}} \right)^3} = 5.7 = 35\).

Mặt khác, theo định nghĩa căn bậc ba ta có \({\left( {\sqrt[3]{5}} \right)^3} = 5\) và \({\left( {\sqrt[3]{7}} \right)^3} = 7\). Do đó \({\left( {\sqrt[3]{5}.\sqrt[3]{7}} \right)^3} = 5.7\) (*)

Lại theo định nghĩa căn bậc ba, từ (*) suy ra \(\sqrt[3]{5}.\sqrt[3]{7} = \sqrt[3]{{5.7}}\).

Nhận xét. Một cách tổng quát, có thể chứng minh các quy tắc nhân, chia, nâng lên lũy thừa các căn bậc ba sau đây:

  • \(\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[3]{{a.b}}\) (Quy tắc nhân hai căn bậc ba);
  • \(\sqrt[3]{a}:\sqrt[3]{b} = \sqrt[3]{{a:b}},\left( {b \ne 0} \right)\) (Quy tắc chia hai căn bậc ba);

\({\left( {\sqrt[3]{a}} \right)^n} = \sqrt[3]{{{a^n}}},\left( {n \in \mathbb{N}} \right)\) (Quy tắc nâng lên lũy thừa một căn bậc ba).

Advertisements (Quảng cáo)