Trang chủ Lớp 10 SBT Toán 10 - Cánh diều Bài 56 trang 63 SBT toán 10 Cánh diều: Hai địa điểm...

Bài 56 trang 63 SBT toán 10 Cánh diều: Hai địa điểm A và B cách hai bởi một con sông (coi hai bờ sông song song). Người ta...

Giải bài 56 trang 63 SBT toán 10 - Cánh diều - Bài tập cuối chương III

Question - Câu hỏi/Đề bài

Hai địa điểm A và B cách hai bởi một con sông (coi hai bờ sông song song). Người ta muốn xây một chiếc cầu bắc vuông góc với bờ sông để có thể đi từ A đến B. Với các số liệu (tính theo đơn vị km) cho trên Hình 28, tìm \(x\) (km) để xác định vị trí đặt chân cầu sao cho khoảng cách từ B đến chân cầu phía B gấp đôi khoảng cách từ A đến chân cầu phía A.

+ Gọi chân cầu phía A là M, chân cầu phía B là N. Tính AM, BN dựa vào Pytago.

+ Giải phương trình \(BM = 2AM\) có dạng \(\sqrt {f\left( x \right)}  = \sqrt {g\left( x \right)} \)

\(\sqrt {f\left( x \right)}  = \sqrt {g\left( x \right)}  \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) \ge 0\\f\left( x \right) = g\left( x \right)\end{array} \right.\)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Gọi chân cầu phía A là M, chân cầu phía B là N.

 

Dựa vào hình 28, áp dụng định lý Pytago, ta có:

\(AM = \sqrt {{x^2} + {2^2}}  = \sqrt {{x^2} + 4} ,BN = \sqrt {{{\left( {6 - x} \right)}^2} + {4^2}}  = \sqrt {{x^2} - 12x + 52} \)

Theo đề bài, ta có: \(BM = 2AM \Leftrightarrow \sqrt {{x^2} - 12x + 52}  = 2\sqrt {{x^2} + 4} \)

 \(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 4 \ge 0\\{x^2} - 12x + 52 = 4\left( {{x^2} + 4} \right)\end{array} \right.\\ \Leftrightarrow {x^2} - 12x + 52 = 4{x^2} + 16\\ \Leftrightarrow 3{x^2} + 12x - 36 = 0\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\\x =  - 6\end{array} \right.\end{array}\)

Do \(x > 0\) nên \(x = 2\).

Vậy với \(x = 2\) km thì khoảng cách từ B đến chân cầu phía B gấp đôi khoảng cách từ A đến chân cầu phía A.