Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(C(1;6)\) và \(D(11;2).\)
a) Tìm tọa độ của điểm \(E\) thuộc trục tung sao cho vectơ \(\overrightarrow {EC} + \overrightarrow {ED} \) có độ dài ngắn nhất.
b) Tìm tọa độ của điểm \(F\) thuộc trục hoành sao cho \(\left| {2\overrightarrow {FC} + 3\overrightarrow {FD} } \right|\) đạt giá trị nhỏ nhất.
c) Tìm tập hợp các điểm \(M\) sao cho \(\left| {\overrightarrow {MC} + \overrightarrow {MD} } \right| = CD.\)
a) Vì điểm \(E\) thuộc trục tung nên tọa độ điểm \(E\) là: \(E(0;y).\)
Ta có: \(\overrightarrow {EC} = (1;6 - y)\) và \(\overrightarrow {ED} = (11;2 - y).\)
Khi đó: \(\overrightarrow {EC} + \overrightarrow {ED} = (1;6 - y) + (11;2 - y) = (12;8 - 2y)\)
\( \Rightarrow \) \(\left| {\overrightarrow {EC} + \overrightarrow {ED} } \right| = \sqrt {{{12}^2} + {{\left( {8 - 2y} \right)}^2}} = \sqrt {4{{\left( {y - 4} \right)}^2} + 144} \)
Do \(4{\left( {y - 4} \right)^2} \ge 0\,\,\forall y,\) đẳng thức xảy ra khi và chỉ khi \(y = 4,\) nên \(\left| {\overrightarrow {EC} + \overrightarrow {ED} } \right| \ge 12,\) đẳng thức xảy ra khi và chỉ khi \(y = 4.\)
Advertisements (Quảng cáo)
Vậy \(E(0;4)\) thì \(\overrightarrow {EC} + \overrightarrow {ED} \) có độ dài ngắn nhất.
b) Vì điểm \(F\) thuộc trục hoành nên tọa độ điểm \(F\) là \(F(x;0).\)
Ta có: \(\overrightarrow {FC} = (1 - x;6)\) và \(\overrightarrow {FD} = (11 - x;2).\)
Khi đó: \(2\overrightarrow {FC} + 3\overrightarrow {FD} = 2(1 - x;6) + 3(11 - x;2) = (35 - 5x;18).\)
\( \Rightarrow \) \(\left| {2\overrightarrow {FC} + 3\overrightarrow {FD} } \right| = \sqrt {{{\left( {35 - 5x} \right)}^2} + {{18}^2}} = \sqrt {25{{\left( {x - 7} \right)}^2} + {{18}^2}} \)
Do \(25{\left( {x - 7} \right)^2} \ge 0\,\,\forall x,\) đẳng thức xảy ra khi và chỉ khi \(x = 7,\) nên \(\left| {2\overrightarrow {FC} + 3\overrightarrow {FD} } \right| \ge 18,\) đẳng thức xảy ra khi vào chỉ khi \(x = 7.\)
Vậy \(F(7;0)\) thì \(\left| {2\overrightarrow {FC} + 3\overrightarrow {FD} } \right|\) đạt giá trị nhỏ nhất.
c) Ta có: \(CD = \left| {\overrightarrow {CD} } \right| = \sqrt {{{\left( {11 - 1} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 2\sqrt {29} \)
Gọi \(I\) là trung điểm của \(CD\) nên \(I(6;4)\)
Ta có: \(\overrightarrow {MC} + \overrightarrow {MD} = 2\overrightarrow {MI} \)
Khi đó: \(\left| {\overrightarrow {MC} + \overrightarrow {MD} } \right| = \left| {2\overrightarrow {MI} } \right| = CD = 2\sqrt {29} \,\, \Leftrightarrow \,\,2MI = 2\sqrt {29} \,\, \Leftrightarrow \,\,MI = \sqrt {29} \)
Vậy tập hợp điểm \(M\) là đường tròn tâm \(I\) bán kính \(MI = \sqrt {29} \)