Giải bài 8.21 trang 58 SBT toán 10 - Kết nối tri thức - Bài tập cuối chương VIII
Cho số nguyên dương n≥4n≥4. Người ta đánh dấu n điểm phân biệt trên một đường tròn. Biết rằng số các hình tam giác với các đỉnh là các điểm được đánh dấu thì bằng số các tứ giác với các đỉnh là các điểm được đánh dấu. Giá trị của n là
A. 4
B. 6
C. 7
D. 9
Advertisements (Quảng cáo)
Áp dụng công thức tổ hợp Ckn=n!k!(n−k)!=n.(n−1)...(n−k+1)k!Ckn=n!k!(n−k)!=n.(n−1)...(n−k+1)k!
Mỗi tam giác được xác định bởi ba điểm đánh dấu nên số tam giác với n điểm được đánh dấu là C3nC3n.
Tương tự số tứ giác với n điểm được đánh dấu là C4nC4n
Số tam giác bằng số tứ giác nên ta có: C3n=C4n⇔n.(n−1).(n−2)3!=n.(n−1).(n−2).(n−3)4!⇔1=n−34⇔n=7
Chọn C.