Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 11 trang 189 SBT Toán Đại số 10: Tính

Bài 11 trang 189 SBT Toán Đại số 10: Tính...

Tính. Bài 11 trang 189 Sách bài tập (SBT) Toán Đại số 10 - Bài 2: Giá trị lượng giác của một cung

Cho \(\tan \alpha  - 3\cot \alpha  = 6\) và \(\pi  < \alpha  < {{3\pi } \over 2}\). Tính

a) \(\sin \alpha  + \cos \alpha \)

b) \({{2\sin \alpha  - \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }}\)

Gợi ý làm bài

Vì \(\pi  < \alpha  < {{3\pi } \over 2}\)

Nên \(\cos \alpha  < 0,\sin \alpha  < 0\) và \(\tan \alpha  > 0\)

Ta có: \(\tan \alpha  - 3\cot \alpha  = 6 \Leftrightarrow \tan \alpha  - {3 \over {\tan \alpha }} - 6 = 0\)

Advertisements (Quảng cáo)

\( \Leftrightarrow {\tan ^2}\alpha  - 6\tan \alpha  - 3 = 0\)

Vì \(\tan \alpha  > 0\) nên \(\tan \alpha  = 3 + 2\sqrt 3\)

a) \({\rm{co}}{{\rm{s}}^2}\alpha  = {1 \over {1 + {{\tan }^2}\alpha }} = {1 \over {22 + 12\sqrt 3 }}\)

Suy ra \({\rm{cos}}\alpha {\rm{ =  - }}{1 \over {\sqrt {22 + 12\sqrt 3 } }},\sin \alpha  =  - {{3 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }}.\)

Vậy \(\sin \alpha  + c{\rm{os}}\alpha {\rm{ =  - }}{{4 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }}\)

\(\eqalign{
& {{2\sin \alpha - \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }} = {{\sin \alpha (2 - {1 \over {{\rm{cos}}\alpha }})} \over {{\rm{cos(1 + }}{1 \over {\sin \alpha }})}} \cr
& = \tan \alpha .{{2\cos \alpha - 1} \over {{\rm{cos}}\alpha }}.{{\sin \alpha } \over {\sin \alpha + 1}} = {\tan ^2}\alpha .{{2\cos \alpha - 1} \over {\sin \alpha + 1}} \cr} \)

\(\eqalign{
& {(3 + 2\sqrt 3 )^2}.{{ - {2 \over {\sqrt {22 + 12\sqrt 3 } }}} \over { - {{3 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }} + 1}} \cr
& = (21 + 12\sqrt 3 ).{{2 + \sqrt {22 + 12\sqrt 3 } } \over {3 + 2\sqrt 3 - \sqrt {22 + 12\sqrt 3 } }} \cr} \)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: