Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 13 trang 106 SBT Toán Đại số 10: Tìm giá trị...

Bài 13 trang 106 SBT Toán Đại số 10: Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của...

Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó. Bài 13 trang 106 Sách bài tập (SBT) Toán Đại số 10 - Bài 1: Bất đẳng thức

Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó

\(y = \sqrt {x - 1}  + \sqrt {5 - x} \)

Gợi ý làm bài

Vế phải có nghĩa khi \(1 \le x \le 5\)

Ta có: \({y^2} = {(\sqrt {x - 1}  + \sqrt {5 - x} )^2} = 4 + 2\sqrt {(x - 1)(5 - x)} \)

Advertisements (Quảng cáo)

=> \(\eqalign{
& \left\{ \matrix{
{y^2} \ge 4,\forall x \in {\rm{[}}1;5] \hfill \cr
{y^2} \le 4 + (x - 1) + (5 - x) = 8 \hfill \cr} \right. \cr
& = > \left\{ \matrix{
y \ge 2 \hfill \cr
y \le 2\sqrt 2 \hfill \cr} \right.\forall x \in {\rm{[}}1;5] \cr} \)

Hơn nữa \(y = 2 \Leftrightarrow (x - 1)(5 - x) = 0 \Leftrightarrow \left[ \matrix{x = 1 \hfill \cr x = 5 \hfill \cr} \right.$\)

\(y = 2\sqrt 2  \Leftrightarrow x - 1 = 5 - x \Leftrightarrow x = 3\)

Vậy giá trị lớn nhất của hàm số đã cho bằng \(2\sqrt 2 $\) khi x = 3, giá trị nhỏ nhất của hàm số đã cho bằng 2 khi x = 1 hoặc x = 5.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)