Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 14 trang 190 Sách bài tập Toán Đại số 10: Không...

Bài 14 trang 190 Sách bài tập Toán Đại số 10: Không dùng bảng số và máy tính, rút gọn các biểu...

Không dùng bảng số và máy tính, rút gọn các biểu thức. Bài 14 trang 190 Sách bài tập (SBT) Toán Đại số 10 - Bài 2: Giá trị lượng giác của một cung

Không dùng bảng số và máy tính, rút gọn các biểu thức

a) \(A = \tan {18^0}\tan {288^0} + \sin {32^0}\sin {148^0} - \sin {302^0}\sin {122^0}\)

b) \(B = {{1 + {{\sin }^4}\alpha  - c{\rm{o}}{{\rm{s}}^4}\alpha } \over {1 - {{\sin }^6}\alpha  - c{\rm{o}}{{\rm{s}}^6}\alpha }}\)

Gợi ý làm bài

a)

Advertisements (Quảng cáo)

\(A = \tan ({90^0} - {72^0})\tan ({360^0} - {72^0}) + \sin {32^0}\sin ({180^0} - {32^0}) - \sin ({360^0} - {58^0})\sin ({180^0} - {58^0})\)

\(\eqalign{
& \cot {72^0}( - \tan {72^0}) + {\sin ^2}{32^0} + {\sin ^2}{58^0} \cr
& = - 1 + {\sin ^2}{32^0} + c{\rm{o}}{{\rm{s}}^2}{32^0} \cr
& = - 1 + 1 = 0 \cr} \)

b) 

\(\eqalign{
& B = {{1 + ({{\sin }^2}\alpha + c{\rm{o}}{{\rm{s}}^2}\alpha )(si{n^2}\alpha - c{\rm{o}}{{\rm{s}}^2}\alpha )} \over {1 - ({{\sin }^2}\alpha + c{\rm{o}}{{\rm{s}}^2}\alpha )({{\sin }^4}\alpha - {{\sin }^2}\alpha c{\rm{o}}{{\rm{s}}^2}\alpha + c{\rm{o}}{{\rm{s}}^4}\alpha )}} \cr
& = {{1 + {{\sin }^2}\alpha - c{\rm{o}}{{\rm{s}}^2}\alpha } \over {1 - {\rm{[}}{{({{\sin }^2}\alpha + c{\rm{o}}{{\rm{s}}^2}\alpha )}^2} - 3{{\sin }^2}\alpha c{\rm{o}}{{\rm{s}}^2}\alpha }} \cr
& = {{3{{\sin }^2}\alpha } \over {3{{\sin }^2}\alpha c{\rm{o}}{{\rm{s}}^2}\alpha }} = {2 \over 3}(1 + {\tan ^2}\alpha ) \cr} \)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: