Trong mặt phẳng tọa độ Oxy, cho elip (E): \({{{x^2}} \over 4} + {y^2} = 1\) và điểm \(A\left( { - 1;{1 \over 2}} \right)\). Gọi d là đưởng thẳng đi qua A có hệ số góc là m. Xác định m để d cắt (E) tại hai điểm phân biệt M và N sao cho A là trung điểm của MN.
Gợi ý làm bài
(Xem hình 3.41)
Phương trình đường thẳng d có dạng
\(y - {1 \over 2} = m(x + 1)\)
\( \Leftrightarrow y = m(x + 1) + {1 \over 2}.\)
Advertisements (Quảng cáo)
Phương trình hoành độ giao điểm của d và (E) là :
\(\eqalign{
& {{{x^2}} \over 4} + {\left( {mx + m + {1 \over 2}} \right)^2} = 1 \cr
& \Leftrightarrow {x^2} + 4{\left[ {mx + \left( {m + {1 \over 2}} \right)} \right]^2} = 4 \cr} \)
\(\Leftrightarrow \left( {4{m^2} + 1} \right){x^2} + 4\left[ {\left( {2m + 1} \right)m} \right]x + 4{\left( {m + {1 \over 2}} \right)^2} - 4 = 0.\)
A là trung điểm của MN
\(\eqalign{
& \Leftrightarrow {{{x_M} + {x_N}} \over 2} = {x_A} \cr
& \Leftrightarrow {{ - 4(2{m^2} + m)} \over {2(4{m^2} + 1)}} = - 1 \cr} \)
\( \Leftrightarrow 4{m^2} + 2m = 4{m^2} + 1 \Leftrightarrow m = {1 \over 2}.\)