Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 19 trang 199 SBT môn Toán Hình học 10: Trong mặt...

Bài 19 trang 199 SBT môn Toán Hình học 10: Trong mặt phẳng Oxy, cho hình chữ nhật ABCD...

Trong mặt phẳng Oxy, cho hình chữ nhật ABCD. Bài 19 trang 199 Sách bài tập (SBT) Toán Hình học 10 - I-Đề toán tổng hợp

Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có đỉnh A(2;-1), phương trình một đường chéo là x - 7y + 15 = 0 và độ dài cạnh AB = \(3\sqrt 2 \). Tìm tọa độ các đỉnh A, C, D biết ${y_B}$ là số nguyên

Gợi ý làm bài

(Xem hình 3.42)

Do tọa độ A không thỏa mãn phương trình đường thẳng x - 7y + 15 = 0 nên phương trình đường chéo BD là : x - 7y + 15 = 0, tọa độ điểm B là B(7t - 15;t).

Ta có : 

\(AB = 3\sqrt 2  \Leftrightarrow {\left( {7t - 17} \right)^2} + {\left( {t + 1} \right)^2} = 18\)

\(\eqalign{
& \Leftrightarrow 50{t^2} - 236t + 272 = 0 \cr
& \Leftrightarrow \left[ \matrix{
t = 2 \hfill \cr
t = {{68} \over {25}}\,\,\,(*) \hfill \cr} \right. \cr} \)

( (*) loại)

Vậy B(-1 ; 2)

Advertisements (Quảng cáo)

Ta có \({\overrightarrow n _{AD}} = \overrightarrow {AB}  = ( - 3;3) =  - 3(1; - 1)\)

Phương trình đường thẳng AD là : 

\(\eqalign{
& 1.(x - 2) - 1.(y + 1) = 0 \cr
& \Leftrightarrow x - y - 3 = 0. \cr} \)

Tọa độ điểm D là nghiệm của hệ:

\(\left\{ \matrix{
x - y - 3 = 0 \hfill \cr
x - 7y + 15 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 6 \hfill \cr
y = 3. \hfill \cr} \right.\)

Vậy D(6 ; 3).

Ta có AC và BD cắt nhau tại trung điểm I.

Suy ra:

\(\eqalign{
& \left\{ \matrix{
{{{x_C} + {x_A}} \over 2} = {{{x_B} + {x_D}} \over 2} = {5 \over 2} \hfill \cr
{{{y_C} + {y_A}} \over 2} = {{{y_B} + {y_D}} \over 2} = {5 \over 2} \hfill \cr} \right. \cr
& \Rightarrow \left\{ \matrix{
{x_C} = 3 \hfill \cr
{y_C} = 6. \hfill \cr} \right. \cr} \)

Vậy C(3 ; 6).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)