Chứng minh rằng
a) √1+cosα+√1−cosα√1+cosα−√1−cosα=cot(α2+π4) (π<α<2π)
b) cos4atan2a−sin4acos4acot2a+sin4a=−tan22a
c) sin22a+4sin2a−41−8sin2a−cos4a=12cot4a
d) 1+2cos7a=sin10,5asin3,5a
e) tan3atana=3−tan2a1−3tan2a
Gợi ý làm bài
a) Vì √1+cosα=−√2cosα2(doπ2<α2<π)
√1−cosα=√2sinα2 cho nên
√1+cosα+√1−cosα√1+cosα−√1−cosα=−√2cosα2+√2cosα2−√2cosα2−√2cosα2
=cosα2−sinα2cosα2+sinα2=1−tanα21+tanα2=tan(π4−α2)
=cot(α2+π4)
b)
Advertisements (Quảng cáo)
=cos4atan2a−sin4acos4acot2a+sin4a=cos4asin2a−sin4acos2acos4acos2a+sin4asin2a.tan2a
=−sin2acos2atan2a=−tan22a$
c)
sin22a+4sin24a1−sin2a−cos4a=4sin2acos2a+4(sin2a−1)1−8sin2a−(1−2sin22a)
4cos2a(sin2a−1)8sin2a(cos2a−1)=12cot4a.
d)
sin10,5asin3,5a=sin(7+3,5a)sin3,5a=sin7acos3,5a+cos7asin3,5asin3,5a
=sin3,5a(2cos23,5a+cos7a)sin3,5a
=(2cos23,5a−1)+1+cos7a
=2cos7a+1.
e)
tan(a+2a)tana=tana+tan2atana(1−tanatan2a=tana+2tana1−tan2atana(1−2tan2a1−tan2a)
=3−tan2a1−3tan2a$