Trang chủ Lớp 10 SBT Toán lớp 10 Bài 23 trang 218 Sách bài tập Toán Đại số 10: Chứng...

Bài 23 trang 218 Sách bài tập Toán Đại số 10: Chứng minh rằng...

Chia sẻ
Chứng minh rằng. Bài 23 trang 218 Sách bài tập (SBT) Toán Đại số 10 – BÀI TẬP ÔN TẬP CUỐI NĂM

Chứng minh rằng

a) \({{1 – \cos 2a + \sin 2a} \over {1 + \cos 2a + \sin 2a}} = \tan a\)

b) \({{\cot a + {\mathop{\rm tana}\nolimits} } \over {1 + \tan 2\tan a}} = 2\cot 2a\)

c) \({{\sqrt 2  – {\mathop{\rm sina}\nolimits}  – \cos a} \over {\sin a – \cos a}} =  – \tan \left( {{a \over 2} – {\pi  \over 8}} \right)\)

d) \(\cos 2a – \cos 3a – \cos 4a + \cos 5a =  – 4\sin {a \over 2}\sin a\cos {{7a} \over 2}\)

Gợi ý làm bài

a)

\(\eqalign{

& {{1 – \cos 2a + \sin 2a} \over {1 + \cos 2a + \sin 2a}} \cr

& = {{2{{\sin }^2}a + 2\sin a\cos a} \over {1 + 2{{\cos }^2}a – 1 + 2\sin a\cos a}} \cr} \)

\( = {{2\sin a(\sin a + {\mathop{\rm cosa}\nolimits} )} \over {2\cos a(\sin a + \cos a)}} = \tan a\)

b) \({{\cot a + \tan a} \over {1 + \tan 2a\tan a}} = {{{1 \over {\tan a}} + \tan a} \over {1 + {{2tana} \over {1 – {{\tan }^2}a}}}}\)

\( = {{1 + {{\tan }^2}a} \over {\tan a}}:{{1 – {{\tan }^2}a + 2{{\tan }^2}a} \over {1 – {{\tan }^2}a}}\)

\( = {{1 – {{\tan }^2}a} \over {\tan a}} = 2\cot 2a\)

c) \({{\sqrt 2  – \sin a – \cos a} \over {\sin a – \cos a}} = {{\sqrt 2  – \sqrt 2 sin(a + {\pi  \over 4})} \over {\sqrt 2 sin(a – {\pi  \over 4})}}\)

\( = {{1 – \sin (a + {\pi  \over 4})} \over {sin(a – {\pi  \over 4})}} = {{sin{\pi  \over 2} – sin(a + {\pi  \over 4})} \over {sin(a – {\pi  \over 4})}}\)

Quảng cáo

\(\eqalign{

& = {{\cos \left( {{a \over 2} + {{3\pi } \over 8}} \right)sin\left( {{\pi \over 8} – {a \over 2}} \right)} \over {2sin\left( {{a \over 2} – {\pi \over 8}} \right)\cos \left( {{a \over 2} – {\pi \over 8}} \right)}} \cr

& = {{sin\left( { – {a \over 2} + {\pi \over 8}} \right)sin\left( {{\pi \over 8} – {a \over 2}} \right)} \over {sin\left( {{a \over 2} – {\pi \over 8}} \right)sin\left( {{a \over 2} – {\pi \over 8}} \right)}} \cr} \)

\( = {{ – sin\left( {{a \over 2} – {\pi  \over 8}} \right)} \over {\cos \left( {{a \over 2} – {\pi  \over 8}} \right)}} =  – \tan \left( {{a \over 2} – {\pi  \over 8}} \right)\)

d) 

\(\eqalign{

& \cos 2a – \cos 3a – \cos 4a + \cos 5a \cr

& = (\cos 2a – \cos 4a) + (\cos 5a – \cos 3a) \cr} \)

\(\eqalign{

& = – 2\sin 3a\sin ( – a) – 2\sin 4a\sin a \cr

& = 2\sin a(\sin 3a – \sin 4a) \cr} \)

\(\eqalign{

& = 4\sin a\cos {{7a} \over 2}\sin \left( { – {a \over 2}} \right) \cr

& = – 4\sin {a \over 2}\sin a\cos {{7a} \over 2} \cr} \)



Chia sẻ