Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 36 trang 114 Sách BT Toán Đại số 10: Giải bất...

Bài 36 trang 114 Sách BT Toán Đại số 10: Giải bất phương trình sau...

Giải bất phương trình sau. Bài 36 trang 114 Sách bài tập (SBT) Toán Đại số 10 - Bài 3: Dấu của nhị thức bậc nhất

Giải bất phương trình sau:

\(|x + 2| + \left| { - 2x + 1} \right| \le x + 1\)

Gợi ý làm bài

Bỏ dấu giá trị  tuyệt đối ở vế trái của bất phương trình ta có:

Advertisements (Quảng cáo)

Bất phương trình đã cho tương đương với

\(\eqalign{
& \left[ \matrix{
\left\{ \matrix{
x \le - 2 \hfill \cr
- (x + 2) + ( - 2x + 1) \le x + 1 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
- 1 < x \le {1 \over 2} \hfill \cr
(x + 2) + ( - 2x + 1) \le x + 1 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
x > {1 \over 2} \hfill \cr
(x + 2) - ( - 2x + 1) \le x + 1 \hfill \cr} \right. \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x \le - 2 \hfill \cr
4x \ge - 2 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
- 1 < x \le {1 \over 2} \hfill \cr
2x \ge 2 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
x \ge {1 \over 2} \hfill \cr
2x \le 0 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x \le - 2 \hfill \cr
x \ge - {1 \over 2} \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
- 2 < x \le {1 \over 2} \hfill \cr
x \ge 1 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
x > {1 \over 2} \hfill \cr
x \le 0 \hfill \cr} \right. \hfill \cr} \right. \cr} \)

(Vô nghiệm)

Vậy bất phương trình đã cho vô nghiệm.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)