Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng. Bài 5 trang 106 Sách bài tập (SBT) Toán Đại số 10 - Bài 1: Bất đẳng thức
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:
\({{a + b + c + d} \over 4} \ge \root 4 \of {abcd} \)
Gợi ý làm bài
Từ \(a + b \ge 2\sqrt {ab} \) và \(c + d \ge 2\sqrt {cd} \)suy ra
\(a + b + c + d \ge 2(\sqrt {ab} + \sqrt {cd} )\)
Advertisements (Quảng cáo)
\( = > 2.2\sqrt {\sqrt {ab} .\sqrt {cd} } \)
=> \({{a + b + c + d} \over 4} \ge \root 4 \of {abcd} \)
=> \(a + b + c + d \ge 2.2\sqrt {\sqrt {ab} .\sqrt {cd} } \)
=> \({{a + b + c + d} \over 4} \ge \root 4 \of {abcd} \)