Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng. Bài 4 trang 106 Sách bài tập (SBT) Toán Đại số 10 - Bài 1: Bất đẳng thức
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:
\({1 \over a} + {1 \over b} \ge {4 \over {a + b}}\)
Gợi ý làm bài
Advertisements (Quảng cáo)
Từ \({1 \over a} + {1 \over b} \ge 2\sqrt {{1 \over {ab}}} \) và \(a + b \ge 2\sqrt {ab} \) suy ra
\((a + b)({1 \over a} + {1 \over b}) \ge 4\) hay \({1 \over a} + {1 \over b} \ge {4 \over {a + b}}\)