Một vật khối lượng 500 kg móc ở đầu sợi dây cáp của một cần cẩu và được kéo thẳng đứng từ mặt đất lên phía trên với sức căng không đổi. Khi tới độ cao 4,5 m thì vật đạt được vận tốc 0,60 m/s.
a) Xác định lực căng của sợi dây cáp. Lấy g = 9,8 m/s2.
b) Nếu sợi dây cáp chỉ chịu được lực căng tối đa là 6000 N, thì ở cùng độ cao nêu trên vật có thể đạt được vận tốc bằng bao nhiêu ?
a) Vật nặng chịu lực căng \(\overrightarrow T \) (ngoại lực) tác dụng, chuyển động từ mặt đất lên tới độ cao h = 10 m và đạt được vận tốc v = 0,5 m. Trong trường hợp này, độ biến thiên cơ năng của vật có giá trị bằng công do ngoại lực thực hiện, nên ta có :
\({{m{v^2}} \over 2} + mgh = Th\)
Advertisements (Quảng cáo)
suy ra lực căng của sợi dây cáp :
\(T = m\left( {{{{v^2}} \over {2h}} + g} \right) \approx 500\left( {{{0,{{60}^2}} \over {2.4,5}} + 9,8} \right) = 4920(N)\)
b) Nếu dây cáp chịu được lực căng tối đa Tmax = 6000 N > 4920 N, thì ở cùng độ cao nêu trên vật có thể đạt được vận tốc tối đa vmax sao cho :
\({{mv_{\max }^2} \over 2} + mgh = {T_{\max }}h\)
Suy ra: \({v_{\max }} = \sqrt {{{2h} \over m}\left( {{T_{\max }} - mg} \right)} = \sqrt {{{2.4,5} \over {500}}\left( {6000 - 500.9,8} \right)} \approx 14(m/s)\)