Trang chủ Lớp 10 Toán lớp 10 Kết nối tri thức Bài 8.12 trang 74 Toán 10 – Kết nối tri thức: Khai...

Bài 8.12 trang 74 Toán 10 – Kết nối tri thức: Khai triển các đa thức:...

Giải bài 8.12 trang 74 SGK Toán 10 – Kết nối tri thức - Bài 25. Nhị thức Newton

Question - Câu hỏi/Đề bài

Khai triển các đa thức:

a) \({(x - 3)^4};\)

b) \({(3x - 2y)^4};\)

c) \({(x + 5)^4} + {(x - 5)^4};\)

d) \({(x - 2y)^5}\)

Advertisements (Quảng cáo)

  Áp dụng công thức khai triển \({(a + b)^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}\) và \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)

Answer - Lời giải/Đáp án

a)     \(\begin{array}{l}{(x - 3)^4} = {x^4} + 4{x^3}.( - 3) + 6{x^2}.{( - 3)^2} + 4x.{( - 3)^3} + {( - 3)^4}\\ = {x^4} - 12{x^3} + 54{x^2} - 108x + 81\end{array}\)

b)     \({(3x - 2y)^4} = 81{x^4} - 216{x^3}y + 216{x^2}{y^2} - 96x{y^3} + 16{y^4}\)

c)      

 \(\begin{array}{l}{(x + 5)^4} + {(x - 5)^4} = {x^4} + 20{x^3} + 150{x^2} + 500x + 625\\ + {x^4} - 20{x^3} + 150{x^2} - 500x + 625\\ = 2{x^4} + 300{x^2} + 1250\end{array}\)

d)    \({(x - 2y)^5} = {x^5} - 10{x^4}y + 40{x^3}{y^2} - 80{x^2}{y^3} + 80x{y^4} - 32{y^5}\)

Advertisements (Quảng cáo)