Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Câu 28 trang 121 SGK Đại số 10 nâng cao, Giải và...

Câu 28 trang 121 SGK Đại số 10 nâng cao, Giải và biện luận các bất phương trình sau:...

Giải và biện luận các bất phương trình sau:. Câu 28 trang 121 SGK Đại số 10 nâng cao - Bài 3: Bất phương trình và hệ phương trình bậc nhất một ẩn

Giải và biện luận các bất phương trình sau:

a) \(m(x - m) > 2(4 - x)\);

b) \(3x + m^2≥ m(x + 3)\);

c) \(k(x - 1) + 4x ≥ 5\);

d) \(b(x - 1) ≤ 2 – x\)

a) Ta có:

\(m(x - m) > 2(4 - x) ⇔ (m + 2)x > m^2+ 8\)

+ Nếu \(m > - 2\) thì \(S = \left( {{{{m^2} + 8} \over {m + 2}}; + \infty } \right)\)

+ Nếu \(m < -2\) thì \(S = \left( { - \infty ;{{{m^2} + 8} \over {m + 2}}} \right)\)

+ Nếu \(m = 2\)  thì \(0x > 12 ; S = Ø\)

b) Ta có:

Advertisements (Quảng cáo)

\(3x +m^2≥ m(x + 3) ⇔ (m – 3)x ≤ m^2– 3m\)

+ Nếu \(m > 3\) thì \(S = (-∞, m]\)

+ Nếu \(m < 3\) thì \(S = [m, +∞)\)

+ Nếu \(m = 3\) thì \(S =\mathbb R\)

c) \(k(x - 1) + 4x ≥ 5 ⇔ (k + 4)x ≥ k + 5\)

+ Nếu \(k > -4\) thì \(S = \left[ {{{k + 5} \over {k + 4}}; + \infty } \right)\)

+ Nếu \(k < -4\) thì \(S = \left( { - \infty ;{{k + 5} \over {k + 4}}} \right]\)

+ Nếu \(k = -4\) thì \(0x ≥ 1\), do đó \(S = Ø\)

d) \(b(x - 1) ≤ 2 – x ⇔ (b + 1)x ≤ b + 2\)

+ Nếu \(b > -1\) thì \(S = \left( { - \infty ;{{b + 2} \over {b + 1}}} \right]\)

+ Nếu \(b < -2\) thì \(S = \left[ {{{b + 2} \over {b + 1}}; + \infty } \right)\)

+ Nếu \(b = -1\) thì \(S =\mathbb R\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)