Trang chủ Lớp 10 Toán lớp 10 (sách cũ) Lý thuyêt phương trình đường Elip: Bài 3. Phương trình đường Elip

Lý thuyêt phương trình đường Elip: Bài 3. Phương trình đường Elip...

Lý thuyêt phương trình đường Elip: Bài 3. Phương trình đường Elip. Định nghĩa đường elip:
Định nghĩa đường elip

Định nghĩa : Trong mặt phẳng, cho hai điểm cố định \(F_1\) và \(F_2\)

Elip là tập hợp các điểm \(M\) sao cho tổng \(F_1M +F_2M = 2a\) không đổi

Các điểm \(F_1\) và \(F_2\)  gọi là tiêu điểm của elip

Khoảng cách \(F_1.F_2= 2c\) gọi là tiêu cự của elip

2. Phương trình chính tắc của elip

Cho elip có tiêu điểm \(F_1\) và \(F_2\)  chọn hệ trục tọa độ \(Oxy\) sao cho \(F_1(-c ; 0)\) và \(F_2(c ; 0)\). Khi đó người ta chứng minh được

\(M(x ; y) \in\) elip  \(\Rightarrow\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}} = 1\) (1)

trong đó:   \(b^2= a^2– c^2\)

Phương trình (1) gọi là phương trình chính tắc của elip

Advertisements (Quảng cáo)

3. Hình dạng của elip

Xét elip \((E)\) có phương trình (1):

a) Nếu điểm \(M(x; y)\) thuộc \((E)\) thì các điểm  \(M_1(-x ; y) M_2(x ;- y)\)  và \(M_3(-x ; -y)\) cũng thuộc \((E)\).

Vậy \((E)\) có các trục đối xứng là \(Ox, Oy\) và có tâm đối xứng là gốc \(O\).

b) Thay \(y = 0\)  vào (1) ta có \(x = ±a\) suy ra \((E)\) cắt \(Ox\) tại hai điểm \(A_1(-a ; 0) A_2(a ;0)\).

Tương tự thay \(x = 0\) vào (1) ta được \(y =  ±b\), vậy \((E)\) cắt \(Oy\) tại hai điểm \( B_1(0 ; -b) B_2(0 ;b)\).

Các điểm  \(A_1, A_2, B_1, B_2\) gọi là các đỉnh của elip

Đoạn thẳng  \(A_1A_2\)  gọi là trục lớn, đoạn thẳng  \(B_1,B_2\)  gọi là trục nhỏ của elip

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)