Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Bài 49 trang 56 SBT Toán 11 – Cánh diều: Trong các...

Bài 49 trang 56 SBT Toán 11 - Cánh diều: Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số tăng là: A...

Sử dụng các cách xác định dãy số tăng: Cho dãy số \(\left( {{u_n}} \right)\). Cách 1: Xét hiệu \(H = {u_{n + 1}} - {u_n}\). Khi đó. Vận dụng kiến thức giải - Bài 49 trang 56 sách bài tập toán 11 - Cánh diều - Bài tập cuối chương II. Trong các dãy số (left( {{u_n}} right)) với số hạng tổng quát sau, dãy số tăng là...

Question - Câu hỏi/Đề bài

Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số tăng là:

A. \({u_n} = \frac{2}{{{3^n}}}\)

B. \({u_n} = \frac{3}{n}\)

C. \({u_n} = {2^n}\)

D. \({u_n} = {\left( { - 2} \right)^n}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng các cách xác định dãy số tăng: Cho dãy số \(\left( {{u_n}} \right)\).

Cách 1: Xét hiệu \(H = {u_{n + 1}} - {u_n}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) tăng khi \(H > 0\) với \(\forall n \in {\mathbb{N}^*}\).

Cách 2: Nếu \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\), xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) tăng khi \(T > 1\) với \(\forall n \in {\mathbb{N}^*}\).

Answer - Lời giải/Đáp án

a) Ta thấy \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\).

Advertisements (Quảng cáo)

Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{2}{{{3^{n + 1}}}}:\frac{2}{{{3^n}}} = \frac{2}{{{3^n}.3}}.\frac{{{3^n}}}{2} = \frac{1}{3}\).

Do \(T

b) Ta thấy \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\).

Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{3}{{n + 1}}:\frac{3}{n} = \frac{3}{{n + 1}}.\frac{n}{3} = \frac{n}{{n + 1}} = 1 - \frac{1}{{n + 1}}\).

Do \(T = 1 - \frac{1}{{n + 1}}

c) Ta thấy \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\).

Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2\).

Do \(T > 1\), dãy số đã cho là dãy số tăng.

d) Xét hiệu \(H = {u_{n + 1}} - {u_n} = {\left( { - 2} \right)^{n + 1}} - {\left( { - 2} \right)^n} = {\left( { - 2} \right)^n}\left[ {\left( { - 2} \right) - 1} \right] = \left( { - 3} \right).{\left( { - 2} \right)^n}\)

Do với \(\forall n \in {\mathbb{N}^*}\), ta không thể xác định được dấu của \({\left( { - 2} \right)^n}\), do đó ta không thể kết luận được \(H 0\).

Do đó dãy số đã cho không là dãy số tăng, cũng không là dãy số giảm.

Đáp án đúng là C.

Advertisements (Quảng cáo)