Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Bài 1 trang 68 SBT Toán 11 – Chân trời sáng tạo...

Bài 1 trang 68 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy...

Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính. Lời giải bài tập, câu hỏi - Bài 1 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2 - Bài 4. Khoảng cách trong không gian. Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết SA=a62...

Question - Câu hỏi/Đề bài

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết SA=a62.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính: Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn thẳng MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M; (P)).

Answer - Lời giải/Đáp án

Gọi E là trung điểm của BC. Vì tam giác ABC đều nên AE là đường trung tuyến đồng thời là đường cao. Do đó, AEBC

Ta có: SA(ABC),BC(ABC)SABC, mà AEBC. Suy ra: BC(SAE)

Advertisements (Quảng cáo)

Kẻ AFSE(SSE). Vì BC(SAE)BCAF

Ta có: BCAF,AFSE, BC và SE cắt nhau tại E và nằm trong mặt phẳng (SBC) nên AF(SBC). Khi đó, AF là khoảng cách từ A đến mặt phẳng (SBC).

Vì tam giác ABC đều nên ^ABC=600.

Tam giác ABE vuông tại E có: AE=AB.sin^ABC=a32

SA(ABC),AE(ABC)SAAE

Tam giác AES vuông tại A, có AF là đường cao nên:

1AF2=1AE2+1SA2=43a2+46a2=2a2AF=a22

Advertisements (Quảng cáo)