Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Bài 2 trang 68 SBT Toán 11 – Chân trời sáng tạo...

Bài 2 trang 68 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho hình chóp tam giác đều S. ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a...

Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính. Vận dụng kiến thức giải - Bài 2 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2 - Bài 4. Khoảng cách trong không gian. Cho hình chóp tam giác đều S. ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của SC...

Question - Câu hỏi/Đề bài

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của SC.

a) Tính khoảng cách từ S đến mặt phẳng (ABC).

b) Tính khoảng cách từ M đến mặt phẳng (SAG).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính: Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn thẳng MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M; (P)).

Answer - Lời giải/Đáp án

a) Vì S.ABC là hình chóp tam giác đều, G là trọng tâm của tam giác ABC nên \(SG \bot \left( {ABC} \right)\). Do đó, \(d\left( {S;\left( {ABC} \right)} \right) = SG\)

Vì tam giác ABC đều nên \(\widehat {ABC} = {60^0}\).

Gọi I là giao điểm của AG và BC. Khi đó, \(AG = \frac{2}{3}AI\)

Tam giác ABC đều nên AI là đường trung tuyến đồng thời là đường cao. Do đó, tam giác ABI vuông tại I. Suy ra: \(AI = AB.\sin \widehat {ABC} = \frac{{3a\sqrt 3 }}{2} \Rightarrow AG = a\sqrt 3 \)

Vì \(SG \bot \left( {ABC} \right),AG \subset \left( {ABC} \right) \Rightarrow SG \bot AG\)

Áp dụng định lý Pythagore vào tam giác ASG vuông tại G có:

\(SG = \sqrt {S{A^2} - A{G^2}} = \sqrt {{{\left( {2a} \right)}^2} - {{\left( {a\sqrt 3 } \right)}^2}} = a\)

b) Vì \(SC \cap \left( {SAG} \right) = S \) \(\Rightarrow \frac{{d\left( {M,\left( {SAG} \right)} \right)}}{{d\left( {C,\left( {SAG} \right)} \right)}} = \frac{{MS}}{{CS}} = \frac{1}{2} \) \(\Rightarrow d\left( {M,\left( {SAG} \right)} \right) = \frac{1}{2}d\left( {C,\left( {SAG} \right)} \right)\)

Vì \(CB \bot AI,CB \bot SG \Rightarrow CB \bot \left( {SAG} \right)\). Mà \(CB \cap \left( {SAG} \right) = I\)

Do đó, \(d\left( {C,\left( {SAG} \right)} \right) = CI = \frac{1}{2}BC = \frac{{3a}}{2}\). Vậy \(d\left( {M,\left( {SAG} \right)} \right) = \frac{{3a}}{4}\)