Một chất điểm chuyển động thẳng có phương trình \(s = 100 + 2t - {t^2}\) trong đó thời gian được tính bằng giây và s được tính bằng mét.
a) Tại thời điểm nào chất điểm có vận tốc bằng 0?
b) Tìm vận tốc và gia tốc của chất điểm tại thời điểm \(t = 3s\).
Sử dụng kiến thức về ý nghĩa của đạo hàm và đạo hàm cấp hai:
+ Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường di chuyển của vật theo thời gian t thì \(f’\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\).
+ Đạo hàm cấp hai \(f”\left( t \right)\) là gia tốc tức thời tại thời điểm t của vật chuyển động có phương trình \(s = f\left( t \right)\).
Advertisements (Quảng cáo)
a) Ta có: \(s’ = - 2t + 2\)
Chất điểm có vận tốc bằng 0 khi \(0 = - 2t + 2 \Leftrightarrow t = 1\)
Vậy chất điểm có vận tốc bằng 0 khi \(t = 1\) giây.
b) Ta có: \(s” = - 2\)
Tại thời điểm \(t = 3s\) ta có: \(s’ = - 3.2 + 2 = - 4\left( {m/s} \right)\); \(s” = - 2\) \(m/{s^2}\)
Vậy khi \(t = 3s\) thì vận tốc của chất điểm là \( - 4m/s\) và gia tốc của chất điểm là \( - 2m/{s^2}\)