Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Bài 7 trang 68 SBT Toán 11 – Chân trời sáng tạo...

Bài 7 trang 68 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho hình lăng trụ đều ABC. A’B’C’ có cạnh đáy bằngBiết \(d\left( {A, \left( {A’BC} \right)} \right) = \frac{{a\sqrt {57} }}{{12}}\)...

Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính. Giải - Bài 7 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2 - Bài 4. Khoảng cách trong không gian. Cho hình lăng trụ đều ABC. A’B’C’ có cạnh đáy bằng a. Biết \(d\left( {A, \left( {A'BC} \right)} \right) = \frac{{a\sqrt {57} }}{{12}}\). Tính \({V_{ABC. A'B'C'}}\)...

Question - Câu hỏi/Đề bài

Cho hình lăng trụ đều ABC. A’B’C’ có cạnh đáy bằng a. Biết \(d\left( {A,\left( {A’BC} \right)} \right) = \frac{{a\sqrt {57} }}{{12}}\). Tính \({V_{ABC.A’B’C’}}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính: Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn thẳng MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M; (P)).

+ Sử dụng kiến thức về thể tích khối lăng trụ: Thể tích khối lăng trụ bằng diện tích đáy nhân với chiều cao: \(V = S.h\)

Answer - Lời giải/Đáp án

Vì ABC. A’B’C’ là lăng trụ đều \(A’A \bot \left( {ABC} \right) \Rightarrow A’A \bot BC\)

Gọi I là trung điểm của BC. Tam giác ABC đều nên AI là đường trung tuyến đồng thời là đường cao. Do đó, \(AI \bot BC\)

Advertisements (Quảng cáo)

Ta có: \(A’A \bot BC\), \(AI \bot BC\) nên \(BC \bot \left( {A’AI} \right)\)

Trong mặt phẳng (A’AI), kẻ \(AH \bot A’I\left( {H \in A’I} \right) \Rightarrow BC \bot AH\)

Vì \(BC \bot AH,AH \bot A’I\) nên \(AH \bot \left( {A’BC} \right)\). Do đó, \(d\left( {A,\left( {A’BC} \right)} \right) = AH = \frac{{a\sqrt {57} }}{{12}}\).

Tam giác ABC đều nên AI là đường trung tuyến đồng thời là đường cao. Do đó, tam giác ABI vuông tại I. Suy ra: \(AI = AB.\sin \widehat {ABC} = \frac{{a\sqrt 3 }}{2}\)

Vì \(A’A \bot \left( {ABC} \right) \Rightarrow A’A \bot AI\)

Tam giác A’AI vuông tại A, AH là đường cao có:

\(\frac{1}{{A'{A^2}}} = \frac{1}{{A{H^2}}} - \frac{1}{{A{I^2}}} = \frac{{144}}{{57{a^2}}} - \frac{4}{{3{a^2}}} = \frac{{68}}{{57{a^2}}} \\ \Rightarrow A’A = \frac{{a\sqrt {969} }}{{34}}\)

Thể tích lăng trụ ABC. A’B’C’ là: \({V_{ABC.A’B’C’}} = A’A.{S_{ABC}} = A’A.\frac{1}{2}.AI.BC \\ = \frac{1}{2}\frac{{a\sqrt {969} }}{{34}}.\frac{{a\sqrt 3 }}{2}.a = \frac{{3{a^3}\sqrt {323} }}{{136}}\)

Advertisements (Quảng cáo)