Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 6.34 trang 19 SBT Toán 11 – Kết nối tri thức:...

Bài 6.34 trang 19 SBT Toán 11 - Kết nối tri thức: Giải các bất phương trình lôgarit sau...

Bất phương trình lôgarit dạng cơ bản có dạng\({\log _a}x > b\) (hoặc \({\log _a}x 0, a \ne 1. Lời giải bài tập, câu hỏi - Bài 6.34 trang 19 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài 21. Phương trình - bất phương trình mũ và lôgarit. Giải các bất phương trình lôgarit sau...

Question - Câu hỏi/Đề bài

Giải các bất phương trình lôgarit sau:

a) \({\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) \ge 2\);

b) \({\rm{lo}}{{\rm{g}}_2}\left( {3x - 1} \right)

c) \({\rm{lo}}{{\rm{g}}_{\frac{1}{2}}}\left( {x + 1} \right) \le {\rm{lo}}{{\rm{g}}_{\frac{1}{2}}}\left( {4\dot x - 5} \right)\);

d) \({\rm{lo}}{{\rm{g}}_2}\left( {2x - 1} \right) \le {\rm{lo}}{{\rm{g}}_4}{(x + 1)^2}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Bất phương trình lôgarit dạng cơ bản có dạng\({\log _a}x > b\) (hoặc \({\log _a}x 0,a \ne 1.\)

Xét bất phương trình dạng \({\log _a}x > b\):

+/ Với \(a > 1\) thì nghiệm của bất phương trình là \(x > {a^b}.\)

+/ Với \(0

Chú ý:

a) Các bất phương trình lôgarit cơ bản còn lại được giải tương tự.

b) Nếu \(a > 1\) thì \({\log _a}u > {\log _a}v \Leftrightarrow u > v > 0.\)

Advertisements (Quảng cáo)

Nếu \(0 {\log _a}v \Leftrightarrow 0

Answer - Lời giải/Đáp án

a) Điều kiện: \(x > - \frac{1}{2}\).

Ta có: \({\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) \ge 2 \Leftrightarrow 2x + 1 \ge {3^2} \Leftrightarrow x \ge 4\) (thoả mãn).

b) Điều kiện: \(\frac{1}{3}

Ta có: \({\rm{lo}}{{\rm{g}}_2}\left( {3x - 1} \right)

Kết hợp với điều kiện, ta được: \(\frac{1}{3}

c) Điều kiện: \(x > \frac{5}{4}\).

Ta có: \({\rm{lo}}{{\rm{g}}_{\frac{1}{2}}}\left( {x + 1} \right) \le {\rm{lo}}{{\rm{g}}_{\frac{1}{2}}}\left( {4x - 5} \right) \Leftrightarrow x + 1 \ge 4x - 5 \Leftrightarrow 3x \le 6 \Leftrightarrow x \le 2\).

Kết hợp với điều kiện, ta được: \(\frac{5}{4}

d) Điều kiện: \(x > \frac{1}{2}\). Ta có: \({\rm{lo}}{{\rm{g}}_2}\left( {2x - 1} \right) \le {\rm{lo}}{{\rm{g}}_4}{(x + 1)^2}\)

\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_2}\left( {2x - 1} \right) \le \frac{{{\rm{lo}}{{\rm{g}}_2}{{(x + 1)}^2}}}{{{\rm{lo}}{{\rm{g}}_2}4}} \Leftrightarrow {\rm{lo}}{{\rm{g}}_2}\left( {2x - 1} \right) \le \frac{{{\rm{lo}}{{\rm{g}}_2}{{(x + 1)}^2}}}{2}\)

\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_2}{(2x - 1)^2} \le {\rm{lo}}{{\rm{g}}_2}{(x + 1)^2} \Leftrightarrow {(2x - 1)^2} \le {(x + 1)^2} \Leftrightarrow 3x\left( {x - 2} \right) \le 0 \Leftrightarrow 0 \le x \le 2\)

Kết hợp với điều kiện, ta được: \(\frac{1}{2}

Advertisements (Quảng cáo)