Một lớp có 40 học sinh, trong đó có 34 em thích ăn chuối, 22 em thích ăn cam và 2 em không thích ăn cả hai loại quả đó. Chọn ngẫu nhiên một học sinh trong lớp. Tính xác suất để em đó:
a) Thích ăn ít nhất một trong hai loại quả chuối hoặc cam.
b) Thích ăn cả hai loại quả chuối và cam.
Áp dụng quy tắc cộng xác suất
Xét các biến cố \(A\) : "Học sinh đó thích ăn chuối”, \(B\) : "Học sinh đó thich ăn cam”.
Tính \(P\left( A \right),P\left( B \right),P\left( {\overline A \,\,\overline B } \right)\).
Advertisements (Quảng cáo)
a) \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \,\,\overline B } \right)\).
b) \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right)\).
Xét các biến cố \(A\) : "Học sinh đó thích ăn chuối”, \(B\) : "Học sinh đó thich ăn cam”.
Ta có \(P\left( A \right) = \frac{{34}}{{40}},P\left( B \right) = \frac{{22}}{{40}},P\left( {\overline A \,\,\overline B } \right) = \frac{2}{{40}} = \frac{1}{{20}}\).
a) \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \,\,\overline B } \right) = 1 - \frac{2}{{40}} = \frac{{38}}{{40}} = \frac{{19}}{{20}}\).
b) \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{{34}}{{40}} + \frac{{22}}{{40}} - \frac{{38}}{{40}} = \frac{{18}}{{40}} = \frac{9}{{20}}\).