Cho hình hộp \(ABC{\rm{D}}.{A_1}{B_1}{C_1}{D_1}\) với M là trung điểm của CD.
a) Xác định giao tuyến của hai mặt phẳng (MAA1) và (BDD1B1).
b) Dựng đường thẳng ∆ qua M cắt BD1 và AA1.
c) Gọi P và Q lần lượt là giao điểm của ∆ với BD1 và AA1. Tính tỉ số \({{MP} \over {MQ}}\).
d) Xác định thiết diện của hình chóp khi cắt bởi mp(B,∆).
a) Gọi I là giao điểm của AM và BD, M1 là trung điểm cuae C1D1, I1 là giao điểm của A1M1 với B1D1. Dễ thấy II1 chính là giao tuyến của hai mặt phẳng (MAA1) và (BDD1B1).
b) Giả sử đường thẳng ∆ cần tìm cắt BD1 và AA1 lần lượt tại P và Q. Khi đó P chính là giao điểm của BD1 với mp(MAA1). Vậy P là giao điểm của BD1 và II1. Từ đó, suy ra cách dựng đường thẳng ∆ như sau:
Advertisements (Quảng cáo)
- Lấy giao điểm P của BD1 và II1.
- Vẽ đường thẳng MP.
Khi đó, đường thẳng MP chính là đường thẳng ∆ cần tìm.
c) Ta có \(DM//AB \Rightarrow {{IM} \over {IA}} = {{M{\rm{D}}} \over {AB}} = {1 \over 2} \Rightarrow {{IM} \over {IA}} = {1 \over 2}\)
và \(IP//AQ \Rightarrow {{MP} \over {PQ}} = {{MI} \over {IA}} = {1 \over 2} \Rightarrow {{MP} \over {PQ}} = {1 \over 2}\)
Suy ra \({{MP} \over {MP + PQ}} = {1 \over {2 + 1}} = {1 \over 3} \Rightarrow {{MP} \over {MQ}} = {1 \over 3}.\)
d) Nối B với Q cắt A1B1 tại E. Từ E kẻ EF // B1M1 cắt A1D1 tại F. Gọi J là giao điểm của EF với C1D1. Nối J với M cắt DD1 tại K.
Vậy thiết diện là ngũ giác BEFKM.