Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 2.4 trang 163 SBT Đại số và giải tích 11: Cho...

Bài 2.4 trang 163 SBT Đại số và giải tích 11: Cho hai hàm số...

Cho hai hàm số . Bài 2.4 trang 163 Sách bài tập (SBT) Đại số và giải tích 11 - Bài 2. Giới hạn của hàm số

Cho hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cùng xác định trên khoảng \(\left( { - \infty ,a} \right)\). Dùng định nghĩa chứng minh rằng, nếu \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to  - \infty } g\left( x \right) = M\) thì \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right).g\left( x \right) = L.M\)

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thoả mãn \({x_n} < a\) và \({x_n} \to  - \infty \)

Vì \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = L\) nên \(\mathop {\lim }\limits_{n \to  + \infty } f\left( {{x_n}} \right) = L\)

Advertisements (Quảng cáo)

Vì \(\mathop {\lim }\limits_{x \to  - \infty } g\left( x \right) = M\) nên \(\mathop {\lim }\limits_{n \to  + \infty } g\left( {{x_n}} \right) = M\)

Do đó, \(\mathop {\lim }\limits_{n \to  + \infty } f\left( {{x_n}} \right).g\left( {{x_n}} \right) = L.M\)

Từ định nghĩa suy ra \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right).g\left( x \right) = L.M\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)