Tính các giới hạn sau :
a) limx→−3x+3x2+2x−3 ; b) limx→0(1+x)3−1x ;
c) limx→+∞x−1x2−1 ; d) limx→5x−5√x−√5 ;
e) limx→+∞=x−5√x+√5 ; f) limx→−2√x2+5−3x+2 ;
g) limx→1√x−1√x+3−2 ; h) limx→+∞1−2x+3x3x3−9 ;
i) limx→01x2(1x2+1−1) ; j) limx→−∞(x2−1)(1−2x)5x7+x+3 ;
Giải:
a) limx→−3x+3x2+2x−3=limx→−3x+3(x−1)(x+3)=limx→−31x−1=−14
b)
limx→0(1+x)3−1x=limx→0(1+x−1)[(1+x)2+(1+x)+1]x=limx→0x[(1+x)2+(1+x)+1]x=limx→0[(1+x)2+(1+x)+1]=3
c) limx→+∞x−1x2−1=limx→+∞1x−1x21−1x2=0
d) limx→5x−5√x−√5
=limx→5(√x−√5)(√x+√5)√x−√5
Advertisements (Quảng cáo)
=limx→5(√x+√5)=2√5
e)
limx→+∞x−5√x+√5=limx→+∞1−5x1√x+√5x=+∞
(Vì 1√x+√5x>0 với mọi x>0 ).
f)
limx→−2√x2+5−3x+2=limx→−2x2+5−9(x+2)(√x2+5+3)=limx→−2(x−2)(x+2)(x+2)(√x2+5+3)=limx→−2x−2√x2+5+3=−23
g)
limx→1√x−1√x+3−2=limx→1(√x−1)(√x+3+2)x+3−4=limx→1(√x−1)(√x+3+2)x−1=limx→1(√x−1)(√x+3+2)(√x−1)(√x+1)=limx→1√x+3+2√x+1=2
h) limx→+∞1−2x+3x3x3−9=limx→+∞1x3−2x2+31−9x3=3
i)
limx→01x2(1x2+1−1)=limx→01x2.(−x2x2+1)=limx→0−1x2+1=−1
j)
limx→−∞(x2−1)(1−2x)5x7+x+3=limx→−∞x2(1−1x2).x5(1x−2)5x7+x+3=limx→−∞(1−1x2)(1x−2)51+1x6+3x7=(−2)5=−32