Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 1 trang 111 Toán 11 tập 1 – Chân trời sáng...

Bài 1 trang 111 Toán 11 tập 1 - Chân trời sáng tạo: Cho hình chóp \(S. ABCD\), đáy \(ABCD\) là hình bình hành có \(O\) là giao điểm hai đường chéo...

– Để chứng minh đường thẳng song song với mặt phẳng, ta chứng minh đường thẳng đấy không nằm trong mặt phẳng và song song với một đường thẳng nằm Lời Giải bài 1 trang 111 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 3. Đường thẳng và mặt phẳng song song. Cho hình chóp (S. ABCD), đáy (ABCD) là hình bình hành có (O) là giao điểm hai đường chéo. Cho (M) là trung điểm của (SC)...

Question - Câu hỏi/Đề bài

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình bình hành có \(O\) là giao điểm hai đường chéo. Cho \(M\) là trung điểm của \(SC\).

a) Chứng minh đường thẳng \(OM\) song song với hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBA} \right)\);

b) Tìm giao tuyến của hai mặt phẳng \(\left( {OMD} \right)\) và \(\left( {SAD} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

– Để chứng minh đường thẳng song song với mặt phẳng, ta chứng minh đường thẳng đấy không nằm trong mặt phẳng và song song với một đường thẳng nằm trong mặt phẳng.

‒ Để tìm giao tuyến của hai mặt phẳng, ta có 2 cách:

+ Cách 1: Tìm 2 điểm chung phân biệt. Giao tuyến là đường thẳng đi qua hai điểm chung.

+ Cách 2: Tìm 1 điểm chung và 2 đường thẳng song song nằm trên mỗi mặt phẳng. Giao tuyến là đường thẳng đi qua điểm chung và song song với hai đường thẳng đó.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) \(M\) là trung điểm của \(SC\)

\(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)

\( \Rightarrow OM\) là đường trung bình của tam giác \(SAC\)

\(\left. \begin{array}{l} \Rightarrow OM\parallel SA\\SA \subset \left( {SA{\rm{D}}} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SA{\rm{D}}} \right)\)

Ta có:

\(\left. \begin{array}{l}OM\parallel SA\\SA \subset \left( {SBA} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SBA} \right)\)

b) Ta có:

\(\left. \begin{array}{l}D \in \left( {OM{\rm{D}}} \right) \cap \left( {SA{\rm{D}}} \right)\\OM \subset \left( {OM{\rm{D}}} \right)\\SA \subset \left( {SA{\rm{D}}} \right)\\OM\parallel SA\end{array} \right\}\)

\( \Rightarrow \) Giao tuyến của hai mặt phẳng \(\left( {OMD} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(d\) đi qua điểm \(D\), song song với \(OM\) và \(SA\).

Advertisements (Quảng cáo)