Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Bài 1 trang 84 Toán 11 tập 1 – Chân trời sáng...

Bài 1 trang 84 Toán 11 tập 1 - Chân trời sáng tạo: Xét tính liên tục của hàm số: \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + 1}&{khi\, \, x \ge 0}\\{1 - x}&{khi\, \...

Xét tính liên tục của hàm số \(f\left( x \right)\) tại điểm \({x_0}\).Bước 1: Kiểm tra \({x_0}\) thuộc tập xác định không. Tính \(f\left( {{x_0}} \right)\).Bước 2: Lời Giải bài 1 trang 84 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 3. Hàm số liên tục. Xét tính liên tục của hàm số...

Question - Câu hỏi/Đề bài

Xét tính liên tục của hàm số:

a) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + 1}&{khi\,\,x \ge 0}\\{1 - x}&{khi\,\,x < 0}\end{array}} \right.\) tại điểm \(x = 0\).

b) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + 2}&{khi\,\,x \ge 1}\\x&{khi\,\,x < 1}\end{array}} \right.\) tại điểm \(x = 1\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Xét tính liên tục của hàm số \(f\left( x \right)\) tại điểm \({x_0}\).

Bước 1: Kiểm tra \({x_0}\) thuộc tập xác định không. Tính \(f\left( {{x_0}} \right)\).

Bước 2: Tính \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right),\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right),\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) (nếu có).

Bước 3: Kết luận:

• Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) thì hàm số liên tục tại điểm \({x_0}\).

• Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \ne f\left( {{x_0}} \right)\) hoặc không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) thì hàm số không liên tục tại điểm \({x_0}\).

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) Dễ thấy x = 0 thuộc tập xác định của hàm số.

\(f\left( 0 \right) = {0^2} + 1 = 1\)

Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} + 1} \right) = {0^2} + 1 = 1\)

\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {1 - x} \right) = 1 - 0 = 1\)

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 1\) nên \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1 = f\left( 0 \right)\).

Vậy hàm số liên tục tại điểm \(x = 0\).

b)Dễ thấy x = 1 thuộc tập xác định của hàm số.

\(f\left( 1 \right) = {1^2} + 2 = 3\)

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 2} \right) = {1^2} + 2 = 3\)

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} x = 1\)

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).

Vậy hàm số không liên tục tại điểm \(x = 1\).

Advertisements (Quảng cáo)