Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{ - {x^2}}&{khi\,\,x < 1}\\x&{khi\,\,x \ge 1}\end{array}} \right.\).
Tìm các giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right);\mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right);\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) (nếu có).
− Để tính giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right);\mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\), ta áp dụng định lý về giới hạn bên trái và giới hạn bên phải của hàm số.
− Để tính giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\), ta so sánh hai giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right);\mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\).
Advertisements (Quảng cáo)
• Nếu \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right) = L\) thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = L\).
• Nếu \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} x = 1\).
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - {x^2}} \right) = - {1^2} = - 1\).
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).