Tinh đạo hàm của các hàm số sau:
a) \(y = \tan \left( {{e^x} + 1} \right)\);
b) \(y = \sqrt {\sin 3x} \);
c) \(y = \cot \left( {1 - {2^x}} \right)\).
Advertisements (Quảng cáo)
Sử dụng công thức tính đạo hàm của hàm hợp: \(y{‘_x} = y{‘_u}.u{‘_x}\).
a) \(y’ = \left( {\tan ({e^x} + 1)} \right)’ = \frac{{({e^x} + 1)’}}{{{\rm{co}}{{\rm{s}}^2}({e^x} + 1)}} = \frac{{{e^x}}}{{{\rm{co}}{{\rm{s}}^2}({e^x} + 1)}}\)
b) \(y’ = \left( {\cot (1 - {2^x})} \right)’ = - \frac{{(1 - {2^x})’}}{{{{\sin }^2}(1 - {2^x})}} = - \frac{{ - {2^x}.\ln 2}}{{{{\sin }^2}(1 - {2^x})}}\)\(y’ = \left( {\sqrt {\sin 3x} } \right)’ = \frac{{(\sin 3x)’}}{{2\sqrt {\sin 3x} }} = \frac{{3\cos 3x}}{{2\sqrt {\sin 3x} }}\)
c) \(y’ = \left( {\cot (1 - {2^x})} \right)’ = - \frac{{(1 - {2^x})’}}{{{{\sin }^2}(1 - {2^x})}} = - \frac{{ - {2^x}.\ln 2}}{{{{\sin }^2}(1 - {2^x})}}\)\( = \frac{{{2^x}.\ln 2}}{{{{\sin }^2}(1 - {2^x})}}\)