Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Bài 6.5 trang 9 Toán 11 tập 2 – Kết nối tri...

Bài 6.5 trang 9 Toán 11 tập 2 - Kết nối tri thức: Chứng minh rằng \(\sqrt {4 + 2\sqrt 3 } - \sqrt {4 - 2\sqrt 3 } =...

Sử dụng hằng đẳng thức bậc 2 để biến đổi biểu thức dưới dấu căn và áp dụng công thức \(\sqrt {{a^2}} = a\,\, Lời Giải bài 6.5 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức Bài 18. Lũy thừa với số mũ thực. Chứng minh rằng (sqrt {4 + 2sqrt 3 } - sqrt {4 - 2sqrt 3 } = 2...

Question - Câu hỏi/Đề bài

Chứng minh rằng \(\sqrt {4 + 2\sqrt 3 } - \sqrt {4 - 2\sqrt 3 } = 2.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

Sử dụng hằng đẳng thức bậc 2 để biến đổi biểu thức dưới dấu căn và áp dụng công thức \(\sqrt {{a^2}} = a\,\,\left( {a > 0} \right)\)

Answer - Lời giải/Đáp án

\(\begin{array}{l}\sqrt {4 + 2\sqrt 3 } - \sqrt {4 - 2\sqrt 3 } = \sqrt {{{\sqrt 3 }^2} + 2\sqrt 3 .1 + 1} - \sqrt {{{\sqrt 3 }^2} - 2\sqrt 3 .1 + 1} \\ = \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} - \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} = \sqrt 3 + 1 - \left( {\sqrt 3 - 1} \right) = 2.\end{array}\)

Advertisements (Quảng cáo)