Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 10 trang 17 Đại số và Giải tích 11 Nâng cao,...

Câu 10 trang 17 Đại số và Giải tích 11 Nâng cao, Chứng minh rằng mọi giao điểm của đường thẳng xác định bởi phương trình với đồ thị của hàm số y = sinx đều cách gốc tọa...

Chứng minh rằng mọi giao điểm của đường thẳng xác định bởi phương trình với đồ thị của hàm số y = sinx đều cách gốc tọa độ một khoảng nhỏ hơn . Câu 10 trang 17 SGK Đại số và Giải tích 11 Nâng cao - Bài 1. Các hàm số lượng giác

Bài 10. Chứng minh rằng mọi giao điểm của đường thẳng xác định bởi phương trình \(y = {x \over 3}\) với đồ thị của hàm số \(y = \sin x\) đều cách gốc tọa độ một khoảng nhỏ hơn  \(\sqrt {10} \)

Đường thẳng \(y = {x \over 3}\) đi qua các điểm \(E(-3 ; -1)\) và \(F(3 ; 1)\)

Advertisements (Quảng cáo)

Chỉ có đoạn thẳng \(EF\) của đường thẳng đó nằm trong dải \(\left\{ {\left( {x{\rm{ }};{\rm{ }}y} \right)| - 1{\rm{ }} \le {\rm{ }}y{\rm{ }} \le {\rm{ }}1} \right\}\) (dải này chứa đồ thị cuả hàm số \(y = \sin x\)). Vậy các giao điểm của đường thẳng  \(y = {x \over 3}\)  với đồ thị của hàm số \(y = \sin x\) phải thuộc đoạn \(EF\) ; mọi điểm của đoạn thẳng này cách \(O\) một khoảng dài hơn \(\sqrt {9 + 1} = \sqrt {10} \) (và rõ ràng \(E, F\) không thuộc đồ thị của hàm số \(y = \sin x\)).  

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)