Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 1.15 trang 9 sách bài tập Đại số và Giải tích...

Câu 1.15 trang 9 sách bài tập Đại số và Giải tích 11 Nâng cao: Chứng minh:...

Câu 1.15 trang 9 sách bài tập Đại số và Giải tích 11 Nâng cao.                     \({{x + x’} \over 2} = k\pi ,{{y + y’} \over 2} = 0,\) tức là . Bài 1: Các hàm số lượng giác

Chứng minh:

a) Điểm có tọa độ \(\left( {k\pi ;0} \right)\) (k là một số nguyên) là tâm đối xứng của đồ thị hàm số \(y = \sin x\)

b) Điểm có tọa độ \(\left( {{{k\pi } \over 2};0} \right)\) (k là một số nguyên) là tâm đối xứng của đồ thị hàm số \(y = \tan x\)

c) Đường thẳng có phương trình \(x = k\pi \) (k là một số nguyên) là trục đối xứng của đồ thị hàm số \(y = \cos x\)

Giải

a) Điểm \(M’\left( {x’;y’} \right)\) là điểm đối xứng của điểm \(M\left( {x;y} \right)\) qua điểm \(\left( {k\pi ;0} \right)\) khi và chỉ khi:

                    \({{x + x’} \over 2} = k\pi ,{{y + y’} \over 2} = 0,\) tức là 

\(\left\{ \matrix{
x’ = - x + k2\pi \hfill \cr
y’ = y \hfill \cr} \right.\)

Gọi C là đồ thị hàm số \(y = \sin x\). C nhận \(\left( {k\pi ;0} \right)\) làm tâm đối xứng khi và chỉ khi: Với mọi điểm \(M\left( {x;y} \right)\) thuộc C (tức là với mọi \(x,y = \sin x\)) điểm  \(M’\left( {x’;y’} \right)\) nói trên (tức là \(x’ =  - x + k2\pi ,y’ =  - y)\) cũng thuộc C; điều này có nghĩa là \( - \sin x = \sin \left( {x + k2\pi } \right),\) với mọi \(x \in Z\) là một tâm đối xứng của đồ thị C của hàm số \(y = \sin x\)

Cách chứng minh khác:

Xét phép đổi trục  tọa độ Oxy sang trục hệ tọa độ IXY, với \(I\left( {k\pi ;0} \right);x = X + k\pi ;y = Y\) (phép biến đổi gốc tọa độ), (h.vẽ) thì đồ thị của hàm số  \(y = \sin x\) trong hệ trục tọa độ Oxy là đồ thị của hàm số

                 \(Y = \sin \left( {X + k\pi } \right) = {\left( { - 1} \right)^k}\sin X\)

Trong hệ tọa độ IXY. Vì hàm số  \(Y = {\mathop{\rm sinX}\nolimits} \) cũng như hàm số \(Y =  - {\mathop{\rm sinX}\nolimits} \) là hàm số lẻ nên đồ thị nhận I là tâm đối xứng.

b) Điểm \(M’\left( {x’;y’} \right)\) là điểm đối xứng của \(M\left( {x;y} \right)\) qua điểm \(\left( {{{k\pi } \over 2};0} \right)\) khi và chỉ khi

                  \({{x + x’} \over 2} = {{k\pi } \over 2},{{y + y’} \over 2} = 0,\) tức là 

Advertisements (Quảng cáo)

\(\left\{ \matrix{
x’ = - x + k\pi \hfill \cr
y’ = - y \hfill \cr} \right.\)

Gọi C là đồ thị của hàm số \(y = \tan x\); C nhận \(\left( {{{k\pi } \over 2};0} \right)\) làm tâm đối xứng khi và chỉ khi: Với mọi điểm \(M\left( {x;y} \right)\) thuộc C (tức là \(x \in {D_1},y = \tan x\)) điểm  \(M’\left( {x’;y’} \right)\) nói trên (tức là \(x’ =  - x + k\pi ,y’ =  - y\)) cũng thuộc C; điều này có nghĩa là \( - \tan x = \tan \left( { - x + k\pi } \right),\) với mọi \(X \in {D_1}.\) Điều đó đúng do \(\pi \) là chu kì của hàm số \(y = \tan x\). Vậy điểm \(\left( {{{k\pi } \over 2};0} \right),k \in Z\) là một tâm đối xứng của đồ thị C của hàm số \(y = \tan x\)

Chứng minh cách khác:

Xét phép đổi trục tọa độ Oxy sang hệ trục tọa độ IXY, với \(I\left( {{{k\pi } \over 2};0} \right);x = X + {{k\pi } \over 2};y = Y.\) Đồ thị của hàm số \(y = \tan x\) trong hệ trục toạn độ Oxy là đồ thị của hàm số                             

\(Y = \tan \left( {X + k{\pi \over 2}} \right) = \left\{ \matrix{
\tan X\,\,\,\,\,\,\,\,\,\,neu\,\,K\text{ chẵn } \hfill \cr
- {1 \over {\tan X}}\,\,\,\,\,neu\,\,K\text{ lẻ } \hfill \cr} \right.\)

Trong hệ tọa độ IXY. Vì hàm số \(Y = \tan X\) cũng như hàm số \(Y =  - {1 \over {\tan X}}\) là hàm số lẻ nên đồ thị nhận I làm tâm đối xứng.

c) Điểm \(M’\left( {x’;y’} \right)\) là điểm đối xứng của điểm \(M\left( {x;y} \right)\) qua đường thẳng \(x = k\pi \) (h.vẽ) khi và chỉ khi \({{x + x’} \over 2} = k\pi ,y = y’,\) tức là

\(\left\{ \matrix{{x’} =  - x + k2\pi  \hfill \cr {y’} = y \hfill \cr}  \right.\)

Gọi C là đồ thị của hàm số \(y = \cos x.\) C nhận đường thẳng \(x = k\pi \) làm một trục đối xứng khi và chỉ khi: Với mọi điểm \(M\left( {x;y} \right)\) thuộc C (tức là với mọi \(x,y = \cos x\)) điểm  \(M’\left( {x’;y’} \right)\) nói trên cũng thuộc C. Điều này có nghĩa là

                  \(\cos x = \cos \left( { - x + k2\pi } \right),\forall x \in R\)

Rõ ràng ta có đẳng thức đó, do \(2\pi \) là chu kì của hàm số \(y = \cos x.\) Vậy đường thẳng \(x = k\pi ,k \in Z\) là một trục đối xứng của đồ thị C của hàm số \(y = \cos x.\).

Cách chứng minh khác

Xét phép đổi trục tọa độ Oxy sang trục toạ độ IXY, với \(I\left( {k\pi ;0} \right);x = X + k\pi ;y = Y,\) thì đồ thị của hàm số \(y = \cos x\) trong hệ trục tọa độ Oxy là đồ thị của hàm số \(Y = \cos \left( {X + k\pi } \right) = {\left( { - 1} \right)^k}\cos X\) trong hệ tọa độ IXY. Vì hàm số \(Y = \cos X\) cũng như hàm số \(Y =  - \cos X\) là các hàm số chẵn nên đồ thị đó nhận trục IY (tức là đường thẳng \(x = k\pi \)) làm trục đối xứng. 

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)