Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 1.14 trang 9 SBT Đại số nâng cao lớp 11

Câu 1.14 trang 9 SBT Đại số nâng cao lớp 11...

Câu 1.14 trang 9 sách bài tập Đại số và Giải tích 11 Nâng cao. a) Chứng minh rằng hàm số \(y = \tan x\) đồng biến trên mọi khoảng \(\left( {a,b} \right)\) nằm trong tập xác định \({D_1}\) của nó.. Bài 1: Các hàm số lượng giác

a) Chứng minh rằng hàm số \(y = \tan x\) đồng biến trên mọi khoảng \(\left( {a,b} \right)\) nằm trong tập xác định \({D_1}\) của nó.

b) Có phải trên bất kì khoảng nào hàm số \(y = \tan x\) đồng biến thì hàm số \(y = \cot x\) nghịch biến ?

Giải

Advertisements (Quảng cáo)

a) Vì \(\left( {a;b} \right) \subset {D_1}\) nên không có số \({\pi  \over 2} + k\pi ,k \in Z\) thuộc \(\left( {a,b} \right).\) Vậy có số nguyên \(l\) để \(\left( {a,b} \right) \subset \left( {{\pi  \over 2} + l\pi ;{\pi  \over 2} + \left( {l + 1} \right)\pi } \right);\) hàm số \(y = \tan x\) đồng biến trên khoảng này nên nó đồng biến trên khoảng \(\left( {a,b} \right).\)

b) Hàm số \(y = \tan x\) đồng biến trên khoảng \(\left( { - {\pi  \over 2};{\pi  \over 2}} \right),\) nhưng khoảng này không nằm trong tập xác định \({D_2}\) của hàm số \(y = \cot x\) trên khoảng đó. (Nếu cả hai hàm số \(y = \tan x\) và \(y = \cot x\) cùng xác định trên khoảng J dễ thấy \(y = \tan x\) đồng biến trên J và hàm số \(y = \cot x\) nghịch biến trên J).

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)